Giải SGK Toán 10 (Chân trời sáng tạo) Bài 2: Tổng và hiệu của hai vectơ

1900.edu.vn xin giới thiệu giải bài tập Toán lớp 10 Bài 2: Tổng và hiệu của hai vectơ sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 Bài 2. Mời các bạn đón xem:

Giải Toán 10 Bài 2: Tổng và hiệu của hai vectơ

Hoạt động khởi động trang 88 Toán lớp 10 Tập 1Một kiện hàng được vận chuyển từ điểm A đến điểm B rồi lại được vận chuyển từ điểm B đến điểm C. Tìm vectơ biểu diễn tổng của hai độ dịch chuyển: AB+BC.

Một kiện hàng được vận chuyển từ điểm A đến điểm B

Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:

Lời giải:

Vectơ biểu diễn tổng của hai độ dịch chuyển AB+BC là AC.

1. Tổng của hai vectơ

Hoạt động khám phá 1 trang 88 Toán lớp 10 Tập 1Một rô bốt thực hiện liên tiếp hai chuyển động có độ dịch chuyển lần lượt được biểu diễn bởi hai vectơ AB và BC (Hình 1)Tìm vectơ biểu diễn độ dịch chuyển của rô bốt sau chuyển động trên.

Một rô bốt thực hiện liên tiếp hai chuyển động có độ dịch chuyển lần lượt

Lời giải:

Vectơ biểu diễn độ dịch chuyển của rô bốt sau hai chuyển động trên là AB+BC.

Hoạt động khám phá 2 trang 89 Toán lớp 10 Tập 1Cho hình bình hành ABCD (Hình 4).

Cho hình bình hành ABCD (Hình 4). Chứng minh rằng vectơ AB + vectơ AD = vectơ AC

Chứng minh rằng AB+AD=AC.

Lời giải:

Do ABCD là hình bình hành nên AD = BC và AD // BC.

Ta thấy hai vectơ AD và BC cùng hướng và |AD|=|BC| nên AD=BC.

Khi đó AB+AD=AB+BC=AC.

Vậy AB+AD=AC.

Thực hành 1 trang 89 Toán lớp 10 Tập 1Cho hình thang ABCD có hai đáy là AB và DC. Cho biết a=AC+CB;   b=DB+BC. Chứng minh hai vectơ a và b cùng hướng.

Lời giải:

Giải Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Ta có a=AC+CB=ABb=DB+BC=DC.

Hình thang ABCD có hai đáy là AB và CD nên AB // CD.

Ta thấy hai vectơ AB và DC cùng hướng nên hai vectơ a và b cùng hướng.

Thực hành 2 trang 89 Toán lớp 10 Tập 1Cho tam giác đều ABC có cạnh bằng a. Tìm độ dài của vectơ AB+AC.

Lời giải:

Giải Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Dựng hình bình hành ABDC.

Do tam giác ABC đều nên ^ABC = 60o.

Hình bình hành ABDC có AB = AC nên ABDC là hình thoi.

Gọi giao điểm của AD và BC là H.

Khi đó AH  BC.

Tam giác ABH vuông tại H có:

sin^ABH=AHAB

 AH = AB . sin ^ABH = a . sin 60o = a32

Do H là giao điểm hai đường chéo của hình thoi ABDC nên AH = 12AD.

Do đó AD = a3.

Áp dụng quy tắc hình bình hành ta có AB+AC=AD.

Do đó |AB+AC|=|AD|=a3.

Vận dụng 1 trang 90 Toán lớp 10 Tập 1Một máy bay có vectơ vận tốc chỉ theo hướng bắc, vận tốc gió là một vectơ theo hướng đông như Hình 7. Tính độ dài vectơ tổng của hai vectơ nói trên.

Một máy bay có vectơ vận tốc chỉ theo hướng bắc, vận tốc gió là một vectơ theo hướng đông như Hình 7

Lời giải:

Giải Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Gọi vectơ AB là vectơ vận tốc của máy bay, vectơ BC là vận tốc gió.

Khi đó vectơ tổng của hai vectơ nói trên là AB+BC=AC.

Khi đó tam giác ABC vuông tại B.

Áp dụng định lý Pythagore vào tam giác ABC vuông tại B:

AC2 = AB2 + BC2

 AC2 = 1502 + 302

 AC2 = 23 400

 AC = 3026 km/h (do AC là độ dài đoạn thẳng nên AC > 0).

Vậy |AB+BC|=|AC|=3026.

Vận dụng 2 trang 90 Toán lớp 10 Tập 1Hai người cùng kéo một con thuyền với hai lực F1=OA,  F2=OB có độ lớn lần lượt là 400 N, 600 N (Hình 8)Cho biết góc giữa hai vectơ là 60°. Tìm độ lớn của vectơ hợp lực F là tổng của hai lực F1 và F2.

Hai người cùng kéo một con thuyền với hai lực F1 = vectơ OA, F2 = vectơ OB có độ lớn lần lượt là 400 N, 600 N (Hình 8)

Lời giải:

Dựng hình bình hành AOBC.

Khi đó F=OC.

Do AOBC là hình bình hành nên ^AOB+^OBC=180° và OA = BC = 400.

Do đó ^OBC=180°^AOB=180°60°=120°.

Áp dụng định lí côsin vào tam giác OBC có:

OC2 = OB2 + BC2 - 2.OB.BC.cos ^OBC

 OC2 = 6002 + 4002 - 2.600.400.cos 120o

 OC2 = 760 000

 OC  872 N (do OC là độ dài đoạn thẳng nên OC > 0)

Vậy |F|  872 N.

2. Tính chất của phép cộng các vectơ

Hoạt động khám phá 2 trang 90 Toán lớp 10 Tập 1Cho ba vectơ a,b,c được biểu diễn như Hình 9.

Giải Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Hãy hoàn thành các phép cộng vectơ sau và so sánh các kết quả tìm được:

a) a+b=AB+BC=?;

    b+a=AE+EC=?

b) (a+b)+c=(AB+BC)+CD=AC+CD=?;

    a+(b+c)=AB+(BC+CD)=AB+BD=?

Lời giải:

a) Ta có: a+b=AB+BC=AC.

b+a=AE+EC=AC.

Do đó a+b=b+a.

b) Ta có: (a+b)+c=(AB+BC)+CD=AC+CD=AD.

a+(b+c)=AB+(BC+CD)=AB+BD=AD.

Do đó (a+b)+c=a+(b+c).

Thực hành 3 trang 91 Toán lớp 10 Tập 1Cho hình vuông ABCD có cạnh bằng 1. Tính độ dài của các vectơ sau:

a) a=(AC+BD)+CB;

b) a=AB+AD+BC+DA.

Lời giải:

Cho hình vuông ABCD có cạnh bằng 1. Tính độ dài của các vectơ sau: vectơ a =(vectơ AB + vectơ BD) + vectơ CB

a) (AC+BD)+CB=AC+BD+CB

=(AC+CB)+BD

=AB+BD

=AD

Do đó |a|=|AD| = 1.

b) AB+AD+BC+DA

=(AB+BC)+(AD+DA)=AC+AA=AC

Do đó |a|=|AC|.

Áp dụng định lí Pythagore vào tam giác ADC có:

AC2 = AD2 + DC2

 AC2 = 12 + 12

 AC2 = 2

 AC = 2 (do AC là độ dài đoạn thẳng)

Vậy |a|=|AC|=2.

3. Hiệu của hai vectơ

Hoạt động khám phá 3 trang 91 Toán lớp 10 Tập 1Tìm hợp lực của hai lực đối nhau F và  -F (Hình 11).

Tìm hợp lực của hai lực đối nhau F  và -F (Hình 11)

Lời giải:

Hợp lực của hai lực đối nhau F và F là F+(F).

Thực hành 4 trang 92 Toán lớp 10 Tập 1Cho hình vuông ABCD có cạnh bằng 1 và một điểm O tùy ý. Tính độ dài của các vectơ sau:

a) a=OBOD;

b) b=(OCOA)+(DBDC).

Lời giải:

Giải Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

a) Ta có OBOD=DB.

Do đó |a|=|DB|.

Áp dụng định lí Pythagore vào tam giác ABD vuông tại A có:

BD2 = AB2 + AD2

 BD2 = 12 + 12

 BD2 = 2

 BD = 2 (do BD là độ dài đoạn thẳng nên BD > 0)

Vậy |a|=|OBOD|=2.

b) Ta có (OCOA)+(DBDC)=AC+CB=AB.

Do đó |b|=|(OCOA)+(DBDC)|=|AB| = 1.

4. Tính chất vectơ của trung điểm đoạn thẳng và trọng tâm tam giác

Hoạt động khám phá 4 trang 92 Toán lớp 10 Tập 1a) Cho điểm M là trung điểm của đoạn thẳng AB. Ta đã biết MB=MA=AM. Hoàn thành phép cộng vectơ sau: MA+MB=MA+AM=MM=?

Cho điểm M là trung điểm của đoạn thẳng AB

b) Cho điểm G là trọng tâm của tam giác ABC có trung tuyến AI. Lấy D là điểm đối xứng với G qua I. Ta có BGCD là hình bình hành và G là trung điểm của đoạn thẳng AD. Với lưu ý rằng GB+GC=GD và GA=DG, hoàn thành phép cộng vectơ sau:

GA+GB+GC=GA+GD=DG+GD=DD=?

Cho điểm M là trung điểm của đoạn thẳng AB

Lời giải:

a) Ta có MA+MB=MA+AM=MM=0

b) Ta có GA+GB+GC=GA+GD=DG+GD=DD=0

Thực hành 5 trang 93 Toán lớp 10 Tập 1Cho hình bình hành ABCD có tâm O. Tìm ba điểm M, N, P thỏa mãn:

a) MA+MD+MB=0;

b) ND+NB+NC=0;

c) PM+PN=0.

Lời giải:

Giải Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

a) Hình bình hành ABCD có tâm O nên O là trung điểm của BD.

Do MA+MD+MB=0 nên M là trọng tâm của tam giác ADB.

Khi đó trên AO chọn M sao cho AM=23AO.

b) Do ND+NB+NC=0 nên N là trọng tâm của tam giác DBC.

Khi đó trên CO chọn N sao cho CN=23CO.

c) Do PM+PN=0 nên P là trung điểm của MN (1).

Ta có AM = 23AO = 23.12AC = 13AC; CN = 23CO = 23.12AC = 13AC.

Do đó MN = 13AC.

MO = 13AO = 13.12 AC = 16AC.

Khi đó MO = 12MN.

Mà O nằm giữa M và N nên O là trung điểm của MN (2).

Từ (1) và (2) suy ra P trùng O.

Bài tập

Bài 1 trang 93 Toán lớp 10 Tập 1Cho hình bình hành ABCD có O là giao điểm của hai đường chéo và một điểm M tùy ý. Chứng minh rằng:

a) BA+DC=0;

b) MA+MC=MB+MD

Lời giải:

Giải Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

a) Do ABCD là hình bình hành nên AB // CD, AB = CD.

Ta thấy hai vectơ BA và DC ngược hướng và |BA|=|DC| nên DC=BA.

Do đó BA+DC=BABA=0.

b) Do O là giao điểm hai đường chéo của hình bình hành ABCD nên O là trung điểm của AC và BD.

Do O là trung điểm của AC nên OA+OC=0.

Do O là trung điểm của BD nên OB+OD=0.

Ta có MA+MC=MO+OA+MO+OC=2MO+OA+OC=2MO.

MB+MD=MO+OB+MO+OD=2MO+OB+OD=2MO.

Do đó MA+MC=MB+MD.

Bài 2 trang 93 Toán lớp 10 Tập 1Cho tứ giác ABCD, thực hiện các phép cộng và trừ vectơ sau:

a) AB+BC+CD+DA;

b) ABAD;

c) CBCD.

Lời giải:

a) AB+BC+CD+DA

=(AB+BC)+(CD+DA)=AC+CA=AA=0

b) ABAD=DB.

c) CBCD=DB.

Bài 3 trang 93 Toán lớp 10 Tập 1Cho tam giác đều ABC cạnh bằng a. Tính độ dài của các vectơ:

a) BA+AC;

b) AB+AC;

c) BABC.

Lời giải:

Giải Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

a) Ta có BA+AC=BC.

Do đó |BA+AC|=|BC| = a.

b) Dựng hình bình hành ABDC.

Gọi H là giao điểm của AD và BC.

Áp dụng quy tắc hình bình hành ta có AB+AC=AD.

Hình bình hành ABDC có AB = AC nên ABDC là hình thoi.

Do đó AD  BC tại H.

Do tam giác ABC đều nên ^ABH = 60o.

Xét tam giác ABH vuông tại H:

sin^ABH=AHAB

 AH = AB . sin ^ABH = a . sin 60o = a32.

Do H là giao điểm hai đường chéo của hình thoi ABDC nên H là trung điểm của AD.

Do đó AD = 2AH = 2 . a32 a3.

Vậy |AB+AC|=|AD|=a3.

c) Ta có BABC=CA.

Do đó |BABC|=|CA|= a.

Bài 4 trang 93 Toán lớp 10 Tập 1Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Chứng minh rằng:

a) OAOB=ODOC;

b) OAOB+DC=0

Lời giải:

Giải Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

a) Ta có OAOB=BAODOC=CD.

Do ABCD là hình bình hành nên AB = CD.

Ta thấy hai vectơ BA và CD cùng hướng và |BA|=|CD| nên BA=CD.

Do đó OAOB=ODOC.

b) Ta có OAOB=ODOC=CD.

Do đó OAOB+DC=CD+DC=CC=0.

Vậy OAOB+DC=0.

Bài 5 trang 93 Toán lớp 10 Tập 1Cho ba lực  F1=MA,F2=MB và F3=MC cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của F1,F2 đều là 10 N và ^AMB=90°. Tìm độ lớn của lực F3.

Lời giải:

Giải Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Dựng hình bình hành MBAD.

Do ba lực F1,F2 và F3 cùng tác động vào vật tại điểm M và vật đứng yên nên

F1+F2+F3=0.

Do đó F3=(F1+F2).

Áp dụng quy tắc hình bình hành ta có:

MA+MB=MD hay F1+F2=MD.

Do đó F3=MD .

Hình bình hành MBAD có ^AMB = 90o và MA = MB nên MBAD là hình vuông.

Áp dụng định lí Pythagore vào tam giác MAD vuông tại A có:

MD2 = MA2 + AD2

 MD2 = 102 + 102

 MD2 = 2.102

 MD = 102 N (do MD là độ dài đoạn thẳng nên MD > 0).

|F3|=|MD|=102 N.

Vậy cường độ của lực F3 là 102 N.

Bài 6 trang 93 Toán lớp 10 Tập 1Khi máy bay nghiêng cánh một góc α, lực F của không khí tác động vuông góc với cánh và bằng tổng của lực nâng F1 và lực cản F2 (Hình 16). Cho biết α = 30° và |F|=a. Tính |F1| và |F2| theo a.

Khi máy bay nghiêng cánh một góc Alpha, lực F của không khí tác động vuông góc với cánh

Lời giải:

Giải Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Đặt tên các điểm đầu và điểm cuối của các vectơ và tên góc như trên hình.

Khi đó ABDC là hình chữ nhật.

Ta có ^BAD α (cùng phụ với β).

Do đó ^BAD = 30o.

Tam giác ABD vuông tại B nên cos^BAD=BAAD

 BA = AD . cos ^BAD = a . cos 30o = a32.

sin^BAD=BDADBD = AD. sin ^BAD = a . sin 30o = a2.

Do ABDC là hình chữ nhật nên BD = AC = a2.

Vậy |F1|=a32;  |F2|=a2.

Bài 7 trang 93 Toán lớp 10 Tập 1Cho hình vuông ABCD có cạnh bằng a và ba điểm G, H, K thỏa mãn: KA+KC=0;  GA+GB+GC=0HA+HD+HC=0. Tính độ dài các vectơ KA,GH,  AG.

Lời giải:

Giải Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Do KA+KC=0 nên K là trung điểm của AC.

Do đó K là giao điểm hai đường chéo của hình vuông ABCD.

Do GA+GB+GC=0 nên G là trọng tâm của tam giác ABC.

Khi đó trên đoạn BK chọn điểm G sao cho BG=23BK.

Do HA+HD+HC=0 nên H là trọng tâm của tam giác ADC.

Khi đó trên đoạn DK chọn điểm H sao cho DH=23DK.

Áp dụng định lí Pythagore vào tam giác ADC vuông tại D có:

AC2 = AD2 + DC2

 AC2 = a2 + a2

 AC2 = 2a2

 AC = 2a (do AC là độ dài đoạn thẳng nên AC > 0)

Do K là trung điểm của AC nên AK = 12AC = 2a2.

Do đó |KA|=2a2.

Do ABCD là hình vuông nên AC = BD.

Do đó BD = 2a.

Do H là trọng tâm của tam giác ADC nên HK = 13DK = 13.12BD = 16BD = 2a6.

Do G là trọng tâm của tam giác ABC nên KG = 13BK = 13.12BD = 16BD = 2a6.

Do đó HK + KG = 2a62a6 hay HG = 2a3.

Do đó |GH|=2a3.

Do ABCD là hình vuông là K là giao điểm hai đường chéo nên AC  BD tại K.

Áp dụng định lí Pythagore vào tam giác AKG vuông tại K có:

AG2 = AK2 + KG2

 AG2 = (2a2)2+(2a6)2

 AG2 = 5a29

 AG = 5a3 (do AG là độ dài đoạn thẳng nên AG > 0)

Do đó |AG|=5a3.

Vậy |KA|=2a2|GH|=2a3|AG|=5a3.

Bài 8 trang 93 Toán lớp 10 Tập 1Một con tàu có vectơ vận tốc chỉ theo hướng nam, vận tốc của dòng nước là một vectơ theo hướng đông như Hình 17. Tính độ dài vectơ tổng của hai vectơ mói trên.

Giải Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Lời giải:

Giải Toán 10 Bài 2: Tổng và hiệu của hai vectơ - Chân trời sáng tạo (ảnh 1)

Đặt tên điểm đầu và điểm cuối của các vectơ như hình trên.

Khi đó vectơ vận tốc của con tàu là vectơ AB; vectơ vận tốc của dòng nước là vectơ BC.

Khi đó vectơ tổng của hai vectơ trên là AB+BC=AC.

Áp dụng định lí Pythagore vào tam giác ABC vuông tại B:

AC2 = AB2 + BC2

 AC2 = 302 + 102

 AC2 = 1 000

 AC = 1010 (do AC là độ dài đoạn thẳng nên AC > 0)

Vậy độ dài tổng của hai vectơ trên là 1010 km/h.

Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chương 4

Bài 1: Khái niệm vectơ

Bài 3: Tích của một số với một vectơ

Bài 4: Tích vô hướng của hai vectơ

Bài tập cuối chương 5

Câu hỏi liên quan

a) Ta có
Xem thêm
Dựng hình bình hành MBAD.
Xem thêm
a) Ta có
Xem thêm
a) Ta có
Xem thêm
a) Do ABCD là hình bình hành nên AB // CD, AB = CD.
Xem thêm
Dựng hình bình hành ABDC.
Xem thêm
Dựng hình bình hành AOBC.
Xem thêm
Do ABCD là hình bình hành nên AD = BC và AD // BC.
Xem thêm
Xem tất cả hỏi đáp với chuyên mục: Tổng và hiệu của hai vectơ CTST
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!