Giải Toán 10 Bài 3: Tích của một số với một vectơ
1. Tích của một số với một vectơ và các tính chất
Lời giải:
Vectơ có hướng từ A sang C.
Vectơ có hướng từ D sang F.
Thực hành 1 trang 95 Toán lớp 10 Tập 1: Cho hai vectơ và một điểm M như Hình 3.
a) Hãy vẽ các vectơ .
b) Cho biết mỗi ô vuông có cạnh bằng 1. Tính: .
Lời giải:
a) Ta thấy 3 > 0 nên hai vectơ và cùng hướng.
Do đó từ M kẻ đường thẳng d song song với đường thẳng a.
Trên đường thẳng d, về bên phải điểm M chọn điểm N sao cho MN = 6.
Khi đó .
Do -3 < 0 nên hai vectơ và ngược hướng.
Do đó từ M kẻ đường thẳng c song song với đường thẳng b.
Trên đường thẳng c, về bên trái điểm M chọn P sao cho MP = 3.
Khi đó .
Ta có hình vẽ như sau:
b) Ta thấy MP là độ dài cạnh huyền của 1 tam giác vuông cân có cạnh bằng 3.
Do đó MP = .
Ta thấy và là hai vectơ đối nên .
Ta thấy là độ cạnh huyền của 1 tam giác vuông có độ dài 2 cạnh góc vuông lần lượt là 1 và 3.
Khi đó .
Do đó .
Vậy ; .
Lời giải:
Phần thuận: G là trọng tâm của tam giác ABC thì .
Chứng minh:
Do G là trọng tâm của tam giác ABC nên .
Do đó hay .
Phần đảo: Tam giác ABC có thì G là trọng tâm của tam giác ABC.
Chứng minh:
Dựng hình bình hành GBDC và gọi I là giao điểm của GD và BC.
Áp dụng quy tắc hình bình hành ta có .
Mà hay .
Do đó .
Khi đó hay GA = GD.
Hình bình hành GBDC có I là giao điểm hai đường chéo GD và BC nên I là trung điểm của BC và I là trung điểm của GD.
Do I là trung điểm của GD nên GI = GD = GA.
GI = GA nên AI = GI + GA = GA + GA = GA hay AG = AI.
Tam giác ABC có AI là đường trung tuyến, lại có AG = AI nên G là trọng tâm của tam giác ABC.
Vậy ta có điều phải chứng minh.
Lời giải:
Ta thấy hai vectơ và ngược hướng và .
.
Vậy .
2. Điều kiện để hai vectơ cùng phương
Lời giải:
Ta thấy với khác thì ≥ 0.
Do đó hai vectơ và là hai vectơ cùng hướng.
Mà và là hai vectơ cùng phương nên hai vectơ và cùng hướng khi hai vectơ và cùng hướng; hai vectơ và ngược hướng khi hai vectơ và ngược hướng.
Do nên .
Do đó độ dài của hai vectơ và bằng nhau.
Lời giải:
Do I là trung điểm của AB nên .
Do J là trung điểm của CD nên .
Do đó hay .
Do nên G là trung điểm của IJ.
Vậy I, G, J thẳng hàng.
Bài tập
a) ;
b) .
Lời giải:
a) Hình bình hành ABCD có O là giao điểm hai đường chéo nên OA = OC, OB = OD.
Khi đó và là hai vectơ đối, và là hai vectơ đối.
Do đó .
Ta có
Vậy .
b) Áp dụng quy tắc hình bình hành ta có .
Do đó hay .
Vậy .
a) ;
b) .
Lời giải:
a) Gọi O là giao điểm hai đường chéo của tứ giác ABCD.
Do M là trung điểm của AB nên .
Do đó .
Do N là trung điểm của CD nên .
Do đó .
hay .
Do đó .
b) Ta có
Do đó
.
Vậy .
Bài 3 trang 97 Toán lớp 10 Tập 1: Cho hai điểm phân biệt A và B. Xác định điểm M sao cho .
Lời giải:
Do nên do đó hay MA = 4MB.
Ta thấy -4 < 0 nên hai vectơ và ngược hướng.
Do đó A và B nằm ở hai phía so với điểm M.
Ta thực hiện vẽ như sau:
Bước 1. Vẽ đường thẳng d, trên đường thẳng d xác định hai điểm M và B.
Bước 2. Trên đường thẳng d, xác định điểm A sao cho A và B nằm ở hai phía so với điểm M thỏa mãn MA = 4MB.
Ta có hình vẽ như sau:
Lời giải:
Do E là trung điểm của AB nên .
Do F là trung điểm của CD nên .
Do G là trung điểm của EF nên .
Do đó .
Ta có
Vậy .
Lời giải:
Ta thấy hai vectơ và ngược hướng và = 600, = 800.
Do đó hay b = a.
Mà hai vectơ và ngược hướng nên .
Vậy .
Bài 6 trang 97 Toán lớp 10 Tập 1: Cho hai điểm phân biệt A và B.
a) Xác định điểm O sao cho .
b) Chứng minh rằng với mọi điểm M, ta có .
Lời giải:
a) Do nên do đó hay OA = 3OB.
Ta thấy -3 < 0 nên hai vectơ và ngược hướng.
Do đó A và B nằm ở hai phía so với điểm O.
Ta thực hiện vẽ như sau:
Bước 1. Vẽ đường thẳng d, trên đường thẳng d xác định hai điểm O và B.
Bước 2. Trên đường thẳng d, xác định điểm A sao cho A và B nằm ở hai phía so với điểm O thỏa mãn OA = 3OB.
Ta có hình vẽ như sau:
b)
Ta có
.
Vậy .
Bài 7 trang 97 Toán lớp 10 Tập 1: Cho tam giác ABC.
a) Xác định các điểm M, N, P thỏa mãn: .
b) Biểu thị mỗi vectơ theo hai vectơ .
c) Chứng minh ba điểm M, N, P thẳng hàng.
Lời giải:
a) Do nên hai vectơ và cùng hướng.
Do đó M và C nằm ở hai phía so với điểm B sao cho MB = BC.
Do nên hay .
Do đó A và N nằm cùng phía so với điểm B sao cho NB = AB.
Do nên hay .
Do đó P và C nằm cùng phía so với điểm A sao cho PA = CA.
Ta có hình vẽ sau:
b) Ta có .
Do nên hay .
Do đó .
Do nên .
Do đó .
Ta có .
Do đó P và C nằm cùng phía so với điểm A và PA = CA nên P là trung điểm của CA.
Do đó .
Do đó .
Ta thấy ; nên .
Do đó M, N, P thẳng hàng và N là trung điểm của MP.
Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Tổng và hiệu của hai vectơ