Cho hai điểm phân biệt A và B. a) Xác định điểm O sao cho vectơ OA + 3(vectơ OB) = vectơ 0

Bài 6 trang 97 Toán lớp 10 Tập 1Cho hai điểm phân biệt A và B.

a) Xác định điểm O sao cho OA+3OB=0.

b) Chứng minh rằng với mọi điểm M, ta có MA+3MB=4MO.

Trả lời

a) Do OA+3OB=0 nên OA=3OB do đó OA=3OB=3OB hay OA = 3OB.

Ta thấy -3 < 0 nên hai vectơ OA và OB ngược hướng.

Do đó A và B nằm ở hai phía so với điểm O.

Ta thực hiện vẽ như sau:

Bước 1. Vẽ đường thẳng d, trên đường thẳng d xác định hai điểm O và B.

Bước 2. Trên đường thẳng d, xác định điểm A sao cho A và B nằm ở hai phía so với điểm O thỏa mãn OA = 3OB.

Ta có hình vẽ như sau:

Giải Toán 10 Bài 3: Tích của một số với một vectơ - Chân trời sáng tạo (ảnh 1)

b)

Giải Toán 10 Bài 3: Tích của một số với một vectơ - Chân trời sáng tạo (ảnh 1)

Ta có

MA+3MB=MO+OA+3MO+OB=4MO+OA+3OB=4MO.

Vậy MA+3MB=4MO.

Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Khái niệm vectơ

Bài 2: Tổng và hiệu của hai vectơ

Bài 3: Tích của một số với một vectơ

Bài 4: Tích vô hướng của hai vectơ

Bài tập cuối chương 5

Bài 1: Số gần đúng và sai số

Câu hỏi cùng chủ đề

Xem tất cả