Giải SBT Toán 11 (Cánh diều) Bài 3: Cấp số nhân

Với giải sách bài tập Toán 11 Bài 3: Cấp số nhân sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 3. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 3: Cấp số nhân

Bài 30 trang 54 SBT Toán 11 Tập 1Trong các dãy số sau, dãy số nào là cấp số nhân?

A. 128; – 64; 32; – 16; 8.

B. 2;  2;  22;  4;  8 .

C. 5; 6; 7; 8; 9.

D. 15; 5; 1; 15;  125 . 

Lời giải:

Đáp án đúng là: A

Xét từng đáp án, ta có:

+ Đáp án A: 64128=3264=1632=816=12 , do đó dãy số 128; – 64; 32; – 16; 8 lập thành  một cấp số nhân có công bội 12 .

+ Đáp án B: 22=22=84 , do đó dãy số 2;  2;  22;  4;  8  không phải cấp số nhân.

+ Đáp án C: 6576 , do đó dãy số 5; 6; 7; 8; 9 không phải cấp số nhân.

+ Đáp án D: 515=1315 , do đó dãy số 15; 5; 1; 15;  125  không phải cấp số nhân.

Bài 31 trang 55 SBT Toán 11 Tập 1Trong các dãy số (un) với số hạng tổng quát sau, dãy số nào là cấp số nhân?

A. un = 5n.

B. un = 1 + 5n.

C. un = 5n + 1.

D. un = 5 + n2.

Lời giải:

Đáp án đúng là: A

Xét từng đáp án, ta thấy dãy số (un) với số hạng tổng quát un = 5n là một cấp số nhân.

Thật vậy, ta thấy un ≠ 0 với mọi n ∈ ℕ*.

Ta có: u1 = 51 = 5; unun1=5n5n1=5n5n5=5  không đổi với mọi n ∈ ℕ*.

Vậy dãy số (un) với số hạng tổng quát un = 5n là một cấp số nhân với số hạng đầu u1 = 5 và công bội q = 5.

Bài 32 trang 55 SBT Toán 11 Tập 1Cho cấp số nhân (un) có số hạng đầu u1 = 2 và công bội q = – 2. Giá trị u5 là:

A. – 32.

B. – 16.

C. – 6.

D. 32.

Lời giải:

Đáp án đúng là: D

Ta có: u5 = u1 . q5 – 1 = u1 . q4 = 2 . (– 2)4 = 32. 

Bài 33 trang 55 SBT Toán 11 Tập 1Viết bốn số hạng xen giữa các số 1 và – 243 để được một cấp số nhân có 6 số hạng. Bốn số hạng đó lần lượt là:

A. – 3; – 9; – 27; – 81.

B. 3; – 9; 27; – 81.

C. 3; 9; 27; 81.

D. – 3; 9; – 27; 81.

Lời giải:

Đáp án đúng là: D

Giả sử cấp số nhân có số hạng đầu u1 = 1, công bội q, bốn số hạng xen giữa 1 và – 243 lần lượt là u2, u3, u4, u5; và số hạng thứ 6 là u6 = – 243.

Ta có u6 = u1 . q5 = q5 = – 243 = (– 3)5, suy ra q = – 3.

Do đó, bốn số hạng cần tìm lần lượt là: u2 = u1 . q = 1 . (– 3) = – 3;

u3 = u2 . q = (– 3) . (– 3) = 9;

u4 = u3 . q = 9 . (– 3) = – 27;

u5 = u4 . q = (– 27) . (– 3) = 81.

Bài 34 trang 55 SBT Toán 11 Tập 1Cho cấp số nhân (un), biết u2 . u6 = 64. Giá trị của u3 . u5 là

A. – 8.

B. – 64.

C. 64.

D. 8.

Lời giải:

Đáp án đúng là: C

Giả sử công bội của cấp số nhân là q.

Khi đó ta có u2 . u6 = (u1 . q) . (u1 . q5) = u12.q6.

Và u3.u5=u1.q2.u1.q4=u12.q6.

Do đó, u3 . u5 = u2 . u6 = 64.

Bài 35 trang 55 SBT Toán 11 Tập 1Cho (un) là cấp số nhân có u1=13 ; u8 = 729.

Tổng 8 số hạng đầu của cấp số nhân đó là:

A. 1382 .

B. 3816 .

C. 3812 .

D. 1386 .

Lời giải:

Đáp án đúng là: B

Giả sử công bội của cấp số nhân là q.

Khi đó ta có u8 = u1 . q7 = q73 . Mà u8 = 729 nên q73=729q7=2187 .

Vì 2 187 = 37, suy ra q = 3.

Vậy tổng 8 số hạng đầu của cấp số nhân đó là:

S8=u11q81q=13.13813=3816.

Bài 36 trang 55 SBT Toán 11 Tập 1Cho hình vuông C1 có cạnh bằng 1. Gọi C2 là hình vuông có các đỉnh là trung điểm các cạnh của hình vuông C1; C3 là hình vuông có các đỉnh là trung điểm các cạnh của hình vuông C2; ... Cứ tiếp tục quá trình như trên, ta được dãy các hình vuông C1; C2; C3; ...; Cn; ... Diện tích của hình vuông C2023 là:

A. 122022 .

B. 122023 .

C. 121011 .

D. 121012 .

Lời giải:

Đáp án đúng là: A

Hình vuông C1 có diện tích S1 = 1.

Hình vuông C2 là hình vuông có các đỉnh là trung điểm các cạnh của hình vuông C1, do đó hình vuông C2 có diện tích S2 = 12S1=12 .

Tương tự, hình vuông C3 có diện tích S3=12S2=12.12=122 .

Cứ tiếp tục như thế ta tính được diện tích hình vuông C2023 là S2023=122022 .

Bài 37 trang 55 SBT Toán 11 Tập 1Cho ba số 2ba,  1b,2bc  theo thứ tự lập thành một cấp số cộng. Chứng minh rằng ba số a, b, c theo thứ tự đó lập thành một cấp số nhân.

Lời giải:

Do ba số 2ba,  1b,2bc  theo thứ tự lập thành một cấp số cộng nên

1b2ba=2bc1b

ba2bbba=2bbcbbc

abba=b+cbc (do b ≠ 0)

abbc=bab+c

⇔ – ab + ac – b2 + bc = b2 + bc – ab – ac

⇔ ac – b2 = b2 – ac

⇔ 2b2 = 2ac

⇔ b2 = ac

ba=cb.

Suy ra ba số a, b, c theo thứ tự lập thành một cấp số nhân.  

Bài 38 trang 55 SBT Toán 11 Tập 1Tìm x để ba số 2x – 3; x; 2x + 3 theo thứ tự lập thành một cấp số nhân.

Lời giải:

Ba số 2x – 3; x; 2x + 3 theo thứ tự lập thành một cấp số nhân khi

x2x3=2x+3x

⇒ x2 = (2x – 3)(2x + 3)

⇔ x2 = 4x2 – 9

⇔ 3x2 = 9

⇔ x2 = 3

x=±3.

Vậy x=±3  thì thỏa mãn yêu cầu bài toán. 

Bài 39 trang 55 SBT Toán 11 Tập 1Tìm số hạng đầu và công bội của cấp số nhân (un), biết:

 Tìm số hạng đầu và công bội của cấp số nhân (un), biết

Lời giải:

a) Ta có u2 + u4 = u3q+u3q=16q+16q .

Mà u2 + u4 = 40 nên ⇒ 16 + 16q2 = 40q

⇔ 2q2 – 5q + 2 = 0 Tìm số hạng đầu và công bội của cấp số nhân (un), biết .

Lại có u3 = u1 q2 = 16, suy ra u1 = 16q2 .

Với  thì u1=16122=64 .

Với q = 2 thì u1=1622=4 .

Vậy u1 = 64, q = 12  hoặc u1 = 4, q = 2.

b) Ta có u1 + u6 = u1 + u1 . q5 = 244, suy ra u1 . q5 = 244 – u1.

Lại có u2 . u5 = (u1 . q) . (u1 . q4) = u1 . (u1 . q5) = u1 . (244 – u1) = 244u1 – u12.

Suy ra 244u1 – u12 = 243 Tìm số hạng đầu và công bội của cấp số nhân (un), biết .

Với u1 = 1 thì q5 = 244 – 1 = 243 = 35, suy ra q = 3.

Với u1 = 243 thì 243q5 = 244 – 243 ⇔ 243q5 = 1 q5=1243q5=135 q=13 .

Vậy u1 = 1, q = 3 hoặc u1 = 243, q=13 .

c) Ta có Tìm số hạng đầu và công bội của cấp số nhân (un), biết

 Tìm số hạng đầu và công bội của cấp số nhân (un), biết

Lấy (2) chia vế theo vế cho 1, ta được q3 = 27, suy ra q = 3.

Ta có u1 (1 + 3 + 32) = 13 ⇔ 13u1 = 13 ⇔ u1 = 1.

Vậy u1 = 1, q = 3.  

Bài 40 trang 55 SBT Toán 11 Tập 1Cho (un) là cấp số nhân có u1 + u5 = 51 và u+ u6 = 102.

a) Tính u10.

b) Số 192 là số hạng thứ mấy của cấp số nhân trên?

c) Số 9 216 có là số hạng nào của cấp số nhân trên không?

Lời giải:

a) Xét số hạng đầu u1 và công bội q. Ta có:

 Cho (un) là cấp số nhân có u1 + u5 = 51 và u2 + u6 = 102

Lấy (2) chia vế theo vế (1) ta được q = 2.

Suy ra u1 . (1 + 24) = 51 ⇔ 17u1 = 51 ⇔ u1 = 3. 

Do đó, u10 = u1 . q9 = 3 . 29 = 1 536.

b) Giả sử số 192 là số hạng thứ k của cấp số nhân (un).

Ta có uk = u1 . qk – 1 = 3  . 2k – 1 = 3 . 2k . 12  = 192, suy ra 2k = 128 = 27, suy ra k = 7. 

Vậy số 192 là số hạng thứ 7.

c) Giả sử 9 216 là số hạng thứ n của cấp số nhân (un).

Ta có 3 . 2n – 1 = 9 216 ⇔ 2n – 1 = 3 072.

Do 3 072 chia hết cho 3 mà với n là số nguyên dương thì 2n – 1 không chia hết cho 3 nên không tồn tại n thoả mãn.

Vậy số 9 216 không là số hạng nào của (un).

Bài 41 trang 56 SBT Toán 11 Tập 1Một cấp số nhân có 7 số hạng, số hạng thứ tư bằng 2, số hạng thứ bảy gấp 32 lần số hạng thứ hai. Tìm các số hạng của cấp số nhân đó.

Lời giải:

Giả sử cấp số nhân đó là (un) với n = 7.

Theo bài ra ta có: u4 = 2 và u7 = 32u2.

Ta có u7 = u1 . q6 và u2 = u1 . q, do đó u1 . q6 = 32u1 . q, suy ra q = 2.

Lại có u4 = u1 . q3 = u1 . 23 = 8u1, suy ra 8u1 = 2 ⇔ u1 = 14 .

Do vậy, u2 = 14.2=12 ; u3 = 12.2=1; u5 = 2 . 2 = 4; u6 = 4 . 2 = 8; u7 = 8 . 2 = 16.

Vậy cấp số nhân cần tìm là: 14;  12;  1;  2;  4;  8;  16 .

Bài 42 trang 56 SBT Toán 11 Tập 1Ba số phân biệt tạo thành một cấp số nhân có tổng bằng 78; đồng thời chúng là số hạng thứ nhất, thứ ba và thứ chín của một cấp số cộng. Tìm ba số đó.

Lời giải:

Giả sử công bội của cấp số nhân là q, công sai của cấp số cộng là d, khi đó gọi ba số cần tìm là a, aq, aq2. (với a, p ≠ 0)

Theo bài ra ta có: a + aq + aq2 = 78 (*); aq = a + 2d; aq2 = a + 8d.

Từ aq = a + 2d, suy ra aq – a = 2d ⇔ a(q – 1) = 2d. (1)

Từ aq2 = a + 8d, suy ra aq2 – a = 8d ⇔ a(q2 – 1) = 8d ⇔ a(q – 1)(q + 1) = 8d. (2)

Với q = 1 thì a = aq = aq2, mà ba số cần tìm là phân biệt nên q = 1 không thỏa mãn.

Do vậy, q ≠ 1 ⇒ q – 1 ≠ 0, do đó a(q – 1) ≠ 0. Chia vế theo vế của (2) cho (1):

Ta được: q + 1 = 4 ⇔ q = 3.

Thay q = 3 vào (*): a + 3a + 9a = 78 ⇔ 13a = 78 ⇔ a = 6.

Suy ra ba số cần tìm là 6; 6 . 3 = 18; 18 . 3 = 54.

Vậy ba số cần tìm là: 6; 18; 54.

Bài 43 trang 56 SBT Toán 11 Tập 1Cho cấp số nhân (un) biết u1 = – 1, q = 3.

a) Tính tổng 10 số hạng đầu của cấp số nhân đó.

b) Giả sử tổng m số hạng đầu của (un) bằng – 364. Tìm m. 

c) Tính tổng S=1u1+1u2+1u3+1u4+1u5 .

Lời giải:

a) Ta có: S10=u11q101q=1.131013=29  524 .

b) Ta có: Sm=u11qm1q=113m13=13m2 .

Mà Sm = – 364, do đó 13m2=364  ⇔ 1 – 3m = – 728

⇔ 3= 729 ⇔ 3m = 36 ⇔ m = 6.

Vậy m = 6.

c) Dãy 1u1;1u2;1u3;1u4;1u5  là cấp số nhân với số hạng đầu là u'1=1u1=11=1  và công bội là q'=1q=13 .

Suy ra S=1u1+1u2+1u3+1u4+1u5Cho cấp số nhân (un) biết u1 = – 1, q = 3  .

Bài 44 trang 56 SBT Toán 11 Tập 1Cho dãy số (u­n) biết u1 = 1, un=13un1+1  với n ∈ ℕ*, n ≥ 2. Đặt vn=un32  với n ∈ ℕ*.

a) Chứng minh rằng dãy số (vn) là cấp số nhân. Tìm số hạng đầu, công bội của cấp số nhân đó.

b) Tìm công thức số hạng tổng quát của (vn), (un).

c) Tính tổng S = u1 + u2 + u3 + ... + u10.

Lời giải:

a) Ta có v1=u132=132=12

vn=un32=13un1+132=13un112=13un132=13vn1 với mọi n ∈ ℕ*, n ≥ 2.

Vậy dãy số (vn) là cấp số nhân với số hạng đầu v1=12  và công bội q=13 .

b) Ta có: vn=v1.qn1=12.13n1=12.3n1 .

Từ vn=un32 , suy ra un=vn+32=3212.3n1=3.3n112.3n1=3n12.3n1 .

c) Ta có S = u1 + u2 + u3 + ... + u10

=v1+32+v2+32+v3+32+...+v10+32

= (v1 + v2 + v3 + ... + v10) + 32.10

 Cho dãy số (un) biết u1 = 1 trang 56 SBT Toán 11

Bài 45 trang 56 SBT Toán 11 Tập 1Anh Dũng kí hợp đồng lao động trong 10 năm với phương án trả lương như sau: Năm thứ nhất, tiền lương của anh Dũng là 120 triệu đồng. Kể từ năm thứ hai trở đi, mỗi năm tiền lương của anh Dũng được tăng lên 10%. Tính tổng số tiền lương anh Dũng lĩnh được trong 10 năm đầu đi làm (làm tròn kết quả đến hàng đơn vị theo đơn vị triệu đồng).

Lời giải:

Ta có tiền lương năm thứ nhất của anh Dũng là: 120 triệu đồng.

Tiền lương năm thứ hai của anh Dũng là:

120 + 120 . 10% = 120(1 + 0, 1) = 120 . 1,1 (triệu đồng).

Tiền lương năm thứ ba của anh Dũng là:

120 . 1,1 + 120 . 1,1 . 10% = 120 . 1,1 (1 + 0,1) = 120 . 1,12 (triệu đồng).

Cứ tiếp tục như vậy, ta được tiền lương năm thứ 10 của anh Dũng là 120 . 1,19 (triệu đồng).

Do vậy, tiền lương mỗi năm của anh Dũng nhận được trong 10 năm lập thành một cấp số nhân với số hạng đầu u1 = 120 và công bội q = 1,1.

Khi đó tổng số tiền lương anh Dũng lĩnh được trong 10 năm đầu đi làm là:

 Anh Dũng kí hợp đồng lao động trong 10 năm với phương án trả lương như sau: Năm thứ nhất, tiền lương của anh Dũng

Vậy tổng số tiền lương anh Dũng lĩnh được trong 10 năm đầu đi làm là 1 912 triệu đồng.

Xem thêm lời giải bài tập SBT Toán 11 Cánh diều hay, chi tiết khác:

Bài 1: Dãy số

Bài 2: Cấp số cộng

Bài tập cuối chương 2

Bài 1: Giới hạn của dãy số

Bài 2: Giới hạn của hàm số

Câu hỏi liên quan

Ta có tiền lương năm thứ nhất của anh Dũng là: 120 triệu đồng. Tiền lương năm thứ hai của anh Dũng là: 120 + 120 . 10% = 120(1 + 0, 1) = 120 . 1,1 (triệu đồng). Tiền lương năm thứ ba của anh Dũng là: 120 . 1,1 + 120 . 1,1 . 10% = 120 . 1,1 (1 + 0,1) = 120 . 1,12 (triệu đồng). Cứ tiếp tục như vậy, ta được tiền lương năm thứ 10 của anh Dũng là 120 . 1,19 (triệu đồng). Do vậy, tiền lương mỗi năm của anh Dũng nhận được trong 10 năm lập thành một cấp số nhân với số hạng đầu u1 = 120 và công bội q = 1,1. Khi đó tổng số tiền lương anh Dũng lĩnh được trong 10 năm đầu đi làm là: Vậy tổng số tiền lương anh Dũng lĩnh được trong 10 năm đầu đi làm là 1 912 triệu đồng.
Xem thêm
Gọi un là số triệu đồng mà người kĩ sư đó nhận được ở năm thứ n. Vì người kĩ sư được công ty thuê với mức lương hằng năm là 180 triệu đồng và nhận được mức tăng lương hằng năm là 5% nên dãy số (un) là một cấp số nhân có u1 = 180 và công bội q = 1 + 5% = 1,05. Khi bắt đầu năm thứ sáu làm việc cho công ty thì mức lương năm của người kĩ sư đó là u6 = u1q5 = 180 . (1,05)5 ≈ 229,73 (triệu đồng).
Xem thêm
Vì x, x + 2 và x + 3 là ba số hạng liên tiếp của một cấp số nhân nên ta suy ra x(x + 3) = (x + 2)2 ⇔ x2 + 3x = x2 + 4x + 4 ⇔ x = – 4. Thử lại, ta có ba số là – 4; – 2; – 1 thoả mãn bài toán. Vậy x = − 4.
Xem thêm
Gọi un là số người bị bệnh ở cuối tuần thứ n. Vì có năm người bị bệnh trong tuần đầu tiên của một đợt dịch, và mỗi người bị bệnh sẽ lây bệnh cho bốn người vào cuối tuần tiếp theo nên dãy số (un) là một cấp số nhân có số hạng đầu u1 = 5 và công bội q = 4. Suy ra số người bị ảnh hưởng bởi dịch bệnh ở cuối tuần 10 là u10 = u1q9 = 5 . 49 = 1 310 720 (người).
Xem thêm
Đáp án đúng là: D Ta có: u5 = u1 . q5 – 1 = u1 . q4 = 2 . (– 2)4 = 32. 
Xem thêm
a) Theo định nghĩa, chèn hai trung bình nhân vào giữa 3 và 24 ta được cấp số nhân có số hạng đầu u1 = 3 và u2 + 2 = u4 = 24. Do tính chất của cấp số nhân nên u4 = u1q3 = 3q3 = 24. Suy ra q = 2. Khi đó u2 = 3 . 2 = 6, u3 = 6 . 12 = 12. Vậy chèn hai trung bình nhân vào giữa 3 và 24 ta được cấp số nhân là: 3, 6, 12, 24. b) Theo định nghĩa, chèn ba trung bình nhân vào giữa 2,25 và 576 ta được cấp số nhân có u1 = 2,25 và u2 + 3 = u5 = 576. Do tính chất của cấp số nhân nên u5 = u1q4 = 2,25q4 = 576. Suy ra q = ± 4. + Với q = 4, ta có u2 = 2,25 . 4 = 9; u3 = 9 . 4 = 36; u4 = 36 . 4 = 144. Khi đó chèn ba trung bình nhân vào giữa 2,25 và 576 ta được cấp số nhân 2,25; 9; 36; 144; 576. + Với q = − 4, ta có u2 = 2,25 . (− 4) = − 9; u3 = (− 9) . (− 4) = 36; u4 = 36 . (− 4) = − 144. Khi đó chèn ba trung bình nhân vào giữa 2,25 và 576 ta được cấp số nhân 2,25; − 9; 36; − 144; 576.
Xem thêm
Xem tất cả hỏi đáp với chuyên mục: Cấp số nhân (sbt)
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!