Giải SBT Toán 8 (Kết nối tri thức) Bài 34: Ba trường hợp đồng dạng của hai tam giác

Với giải sách bài tập Toán 8 Bài 34: Ba trường hợp đồng dạng của hai tam giác sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 8 Bài 34. Mời các bạn đón xem:

Sách bài tập Toán 8 Bài 34: Ba trường hợp đồng dạng của hai tam giác

Bài 9.12 trang 55 SBT Toán lớp 8 Tập 2: Hai tam giác có độ dài ba cạnh như sau có đồng dạng không ? Vì sao ?

(1) 2 cm, 3 cm, 4 cm và 6 cm, 9 cm, 12 cm.

(2) 3 cm, 5 cm, 6 cm và 6 cm, 10 cm, 11 cm.

(3) 2 cm, 3 cm, 3 cm và 2 cm, 2 cm, 3 cm.

(4) 4 cm, 4 cm, 4cm và 3 cm, 3 cm, 3 cm.

Lời giải:

(1) Vì 26=39=412 nên hai tam giác này đồng dạng với nhau theo trường hợp cạnh – cạnh – cạnh.

(2) Vì 36=510611  nên hai tam giác này không đồng dạng với nhau.

(3) Vì 22=3332  nên hai tam giác này không đồng dạng với nhau.

(4) Vì 43=43=43  nên hai tam giác này đồng dạng với nhau theo trường hợp cạnh – cạnh – cạnh.

Bài 9.13 trang 55 SBT Toán lớp 8 Tập 2: Cho hai tam giác ABC và DEF lần lượt có chu vi là 15 cm và 20 cm. Biết rằng ABDE=ACDF=34 . Chứng minh rằng ∆ABC ᔕ ∆DEF.

Lời giải:

Theo tính chất dãy tỉ số bằng nhau ta có:

34=ABDE=ACDF=AB+ACDE+DF=15BC20FE

Do đó,

4(15 – BC) = 3(20 – FE)

60 – 4BC = 60 – 3FE

4BC = 3FE

Suy ra  BCFE=34 .

Tam giác ABC và tam giác DEF có:

ABDE=ACDF=BCEF(=34).

Nên ∆ABC ᔕ ∆DEF (c.c.c).

Bài 9.14 trang 55 SBT Toán lớp 8 Tập 2: Cho hai tam giác ABC và MNP thỏa mãn 2AB = 3AC = 4BC và DE = 6 cm, DF = 4 cm, EF = 4 cm. Chứng minh rằng ∆ABC ᔕ ∆MNP.

Đề bài của sách bài tập chưa chính xác, cần sửa như sau:

Cho hai tam giác ABC và DEF thỏa mãn 2AB = 3AC = 4BC và DE = 6 cm, DF = 4 cm, EF = 4 cm. Chứng minh rằng ∆ABC ᔕ ∆DEF.

Lời giải:

Vì DE = 6 cm, DF = 4 cm, EF = 3 cm nên ta có: DE : DF : EF = 6 : 4 : 3.

Do đó DE6=DF4=EF3  . Suy ra 2DE12=3DF12=4EF12  .

Suy ra 2DE = 3DF = 4EF.

Mà 2AB = 3AC = 4BC  (gt)

Do đó, ABDE=ACDF=BCEF .

Suy ra, ∆ABC ᔕ ∆DEF (c.c.c).

Bài 9.15 trang 55 SBT Toán lớp 8 Tập 2: Cho tam giác ABC và điểm O nằm trong tam giác. Lấy M, N, P là các điểm lần lượt trên các tia OA, OB, OC sao cho OA = 3OM, OB = 3ON, OC = 3OP. Chứng minh rằng ∆ABC ᔕ ∆MNP và tìm tỉ số đồng dạng.

Lời giải:

Cho tam giác ABC và điểm O nằm trong tam giác. Lấy M, N, P là các điểm lần lượt

Vì OA = 3OM, OB = 3ON, OC = 3OP.

Nên OAOM=3;OBON=3;OCOP=3 . Suy ra OAOM=OBON=OCOP=3 .

Tam giác OMN có: OAOM=OBON.

Nên suy ra AB song song với MN (định lí Thalès đảo).

Do đó, ABMN=OAOM=3  .

Chứng minh tương tự ta có: ACMP=3;BCNP=3 .

Tam giác ABC và tam giác MNP có:

ABMN=ACMP=BCNP=3.

Do đó, ∆ABC ᔕ ∆MNP (c.c.c) với tỉ số đồng dạng 3.

Bài 9.16 trang 55 SBT Toán lớp 8 Tập 2: Cho tam giác ABC và các điểm M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh rằng ∆ABC ᔕ ∆MNP và tìm tỉ số đồng dạng.

 

Lời giải:

Cho tam giác ABC và điểm O nằm trong tam giác. Lấy M, N, P là các điểm lần lượt

Tam giác ABC có:

M, N lần lượt là trung điểm của BC, CA

Nên MN là đường trung bình của tam giác ABC.

Do đó, MN // AB và ABMN=2  .

Chứng minh tương tự ta có:BCPN=2ACPM=2 .

Tam giác ABC và tam giác MNP có:

 ABMN=BCPN=ACPM(= 2).

Nên ∆ABC ᔕ ∆MNP (c.c.c) theo tỉ số đồng dạng là 2.

Bài 9.17 trang 55 SBT Toán lớp 8 Tập 2: Cho tứ giác ABCD với AB = 2 cm, AD = 3 cm, BD = 4 cm, BC = 6 cm, CD = 8 cm. Chứng minh rằng ∆ABD ᔕ ∆BDC và AB song song với CD.

 

Lời giải:

Cho tứ giác ABCD với AB = 2 cm, AD = 3 cm, BD = 4 cm, BC = 6 cm, CD = 8 cm. Chứng minh rằng

Tam giác ABD và tam giác BDC có:

 ABBD=BDDC=ADBC  (do  24=48=36=12

Do đó, ∆ABD ᔕ ∆BDC (c.c.c).

Suy ra: ^ABD=^BDC (hai góc tương ứng).

Mà hai góc này ở vị trí so le trong. Do đó, AB song song với CD.

Bài 9.18 trang 55 SBT Toán lớp 8 Tập 2: Cho tam giác ABC có độ dài các cạnh là AB = 4 cm, BC = 5 cm, CA = 6 cm. Tam giác MNP đồng dạng với tam giác ABC và có độ dài cạnh lớn nhất bằng 9 cm. Hãy cho biết độ dài các cạnh MN, MP, NP của tam giác MNP.

Lời giải:

Vì tam giác MNP đồng dạng với tam giác ABC nên:

 MNAB=NPBC=MPAC(các cạnh tương ứng tỉ lệ).

Mà trong tam giác ABC, cạnh AC lớn nhất nên trong tam giác MNP cạnh lớn nhất là MP.

Do đó, MP = 9 cm.

Khi đó MNAB=NPBC=MPAC=96=32 .

Suy ra: MN=32AB=32.4=6  (cm), NP=32BC=325=152  (cm).

Bài 9.19 trang 55 SBT Toán lớp 8 Tập 2: Với hai tam giác ABC và DEF bất kì thỏa mãn ABEF=BCDF ^ABC=^DFE  . Những khẳng định nào sau đây là đúng ?

(1) ∆ABC ᔕ ∆DEF.

(2) ∆CAB ᔕ ∆DEF.

(3) ∆ABC ᔕ ∆EFD

(4) ∆BCA ᔕ ∆EFD.

(5) ∆ABC ᔕ ∆FDE.

(6) ∆BAC ᔕ ∆FED.

Lời giải:

Hai tam giác ABC và tam giác DEF có:

 ABEF=BCDF

^ABC=^DFE

Do đó, ∆ABC ᔕ ∆EFD (c.g.c).

Khi đó, đỉnh A tương ứng với đỉnh E, đỉnh B tương ứng với đỉnh F và đỉnh C tương ứng với đỉnh D.

Suy ra các đáp án đúng là (2), (3), (6).

Bài 9.20 trang 56 SBT Toán lớp 8 Tập 2: Với hai tam giác bất kì ABC và MNP thỏa mãn ^ABC=^NMP^ACB=^MNP  . Những khẳng định nào sau đây là đúng ?

(1) ∆ABC ᔕ ∆MNP.

(2) ∆BCA ᔕ ∆MNP.

(3) ∆ABC ᔕ ∆NPM.

(4) ∆CAB ᔕ ∆NPM.

(5) ∆ABC ᔕ ∆PMN.

(6) ∆BAC ᔕ ∆MNP.

Lời giải:

Tam giác ABC và tam giác MNP có:

^ABC=^NMP

^ACB=^MNP

Do đó, ∆ABC ᔕ ∆PMN (g.g).

Khi đó đỉnh A tương ứng với đỉnh P, đỉnh B tương ứng với đỉnh M, đỉnh C tương ứng với đỉnh N.

Suy ra, các khẳng định đúng là (2), (4), (5).

Bài 9.21 trang 56 SBT Toán lớp 8 Tập 2: Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC của tam giác ABC sao cho AM . AB = AN . AC.

a) Chứng minh rằng ∆AMN ᔕ ∆ACB.

b) Lấy E, F lần lượt là trung điểm của MN, BC. Chứng minh rằng ^EAB=^FAC .

Lời giải:

Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC

Vì AM . AB = AN . AC nên AMAC=ANAB .

Tam giác AMN và tam giác ABC có:

AMAC=ANAB

^BAC chung.

Do đó, ∆AMN ᔕ ∆ACB (c.g.c).

b)

Vì ∆AMN ᔕ ∆ACB (cmt) nên ^AMN=ˆC  và AMAC=MNCB .

Mà E, F lần lượt là trung điểm của MN, BC nên MN = 2ME, BC = 2FC.

Do đó: AMAC=MNCB=2ME2FC=MEFC .

Tam giác MAE và tam giác CAF có:

^AME=ˆC (do ^AMN=ˆC );

AMAC=MEFC(cmt).

Do đó, ∆AME ᔕ ∆ACF (c.g.c). Suy ra ^EAM=^FAC (hai góc tương ứng).

Vậy ^EAB=^FAC .

Bài 9.22 trang 56 SBT Toán lớp 8 Tập 2: Cho tam giác ABC và hai điểm P, Q lần lượt nằm trên các tia đối của tia AB và AC sao cho ^APQ=^ACB  . Chứng minh rằng:

a) AP . AB = AQ . AC.

b) ∆APC ᔕ ∆AQB.

 

Lời giải:

Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC

a)

Xét tam giác APQ và tam giác ACB có:

 ^PAQ=^BAC (hai góc đối đỉnh)

 ^APQ=^ACB (giả thiết)

Do đó, ∆APQ ᔕ ∆ACB (g.g) nên APAC=AQAB .

Suy ra: AP . AB = AQ . AC.

b)

Vì  APAC=AQAB nên APAQ=ACAB.

Xét tam giác APC và tam giác AQB có:

^PAC=^BAQ (hai góc đối đỉnh),

APAQ=ACAB (chứng minh trên).

Do đó, ∆APC ᔕ ∆AQB (c.g.c).

Bài 9.23 trang 56 SBT Toán lớp 8 Tập 2:Cho tam giác ABC và hai điểm M, N lần lượt nằm trên hai cạnh AB, AC sao cho MN song song với BC. Gọi ME, BF lần lượt là phân giác của các góc M, B của các tam giác AMN và tam giác ABC. Chứng minh rằng:

a) ∆MEN ᔕ ∆BFC.

b) AEAF=MNBC .

 

Lời giải:

Cho tam giác ABC và hai điểm M, N lần lượt nằm trên hai cạnh AB, AC sao cho MN song song

a)

Vì MN song song với BC (gt) nên

^ENM=ˆC (hai góc đồng vị);

^AMN=^ABC (hai góc đồng vị).

Mà ME, BF lần lượt là phân giác của các góc M, B của các tam giác AMN và tam giác ABC nên ^EMN=12^AMN  và  ^FBC=12^ABC. Do đó, ^EMN=^FBC.

Tam giác MEN và tam giác BFC có:

 ^ENM=ˆC (cmt)

 ^EMN=^FBC (cmt)

Do đó, tam giác MEN đồng dạng với tam giác BFC (g.g).

b)

Tam giác ABC có:

MN song song với BC

Nên theo hệ quả định lý Thalès ta có:

 MNBC=AMAB(1).

Vì ME, BF lần lượt là phân giác của ˆM , ˆB  của tam giác AMN và tam giác ABC nên ^EMA=12^AMN=12^ABC=^FBA .

Do đó ^EMA=^FBA ,  mà hai góc này ở vị trí đồng vị nên ME song song với BF.

Tam giác ABF có ME song song với BF nên theo hệ quả định lý Thalès ta có:

AEAF=AMAB (2).

Từ (1) và (2) ta có: AEAF=MNBC .

Bài 9.24 trang 56 SBT Toán lớp 8 Tập 2: Cho hình thang ABCD (AB // CD). Biết rằng AB = 2 cm, BD = 4 cm, CD = 8 cm. Chứng minh rằng BC = 2AD

 

Lời giải:

Cho hình thang ABCD (AB // CD). Biết rằng AB = 2 cm, BD = 4 cm, CD = 8 cm

Vì AB song song CD nên ^ABD=^BDC  (hai góc so le trong).

Tam giác ABD và tam giác BDC có:

 ABBD=BDDC  (do 24=48=12 )

 ^ABD=^BDC(cmt)

Do đó, ∆ABD ᔕ ∆BDC (c.g.c).

Suy ra: BDDC=ADBC=ABBD=12 .

Do đó, BC = 2AD.

Bài 9.25 trang 56 SBT Toán lớp 8 Tập 2: Cho hình thang ABCD (AB // CD). Biết rằng AD cắt BC tại E, AC cắt BD tại F.

a) Chứng minh rằng: ∆EAB ᔕ ∆EDC, ∆FAB ᔕ ∆FCD.

b) Lấy hai điểm M, N lần lượt là trung điểm của AB, CD. Chứng minh rằng bốn điểm M, N, E, F thẳng hàng.

 

Lời giải:

Cho hình thang ABCD (AB // CD). Biết rằng AD cắt BC tại E, AC cắt BD tại F

a)

Vì AB song song với đáy CD của tam giác EDC nên ∆EAB ᔕ ∆EDC.

Vì AB song song với đáy CD của tam giác FCD nên ∆FAB ᔕ ∆FCD.

b)

Vì ∆EAB ᔕ ∆EDC (cmt) nên EAED=ABDC=2AM2DN=AMDN  (do M, N lần lượt là trung điểm của AB, CD).

Tam giác EAM và tam giác EDN có:

 EAED=AMDN (cmt)

^EAM=^EDN (AM song song với DN, hai góc đồng vị)

Do đó, ∆EAM ᔕ ∆EDN (c.g.c).

Suy ra ^AEM=^DEN.

Do đó, tia EM trùng với tia EN hay 3 điểm M, E, N thẳng hàng (1).

Vì ∆FAB ᔕ ∆FCD nên FAFC=ABCD=AMCN  .

Hai tam giác FAM và tam giác FCN có:

FAFC=AMCN (cmt)

^FAM=^FCN (AM song song với CN, hai góc so le trong)

Do đó, ∆FAM ᔕ ∆FCN (c.g.c).

Nên ^AFM=^CFN

Do đó, tia FM và tia FN là hai tia đối nhau.

Suy ra, F, M, N thẳng hàng (2).

Từ (1) và (2) ta có: 4 điểm M, E, F, N thẳng hàng.

Bài 9.26 trang 56 SBT Toán lớp 8 Tập 2: Cho tam giác ABC với AB = 6 cm, AC = 9 cm. Lấy điểm D trên cạnh AC sao cho AD = 4 cm. Chứng minh rằng ∆ABD ᔕ ∆ACB và BC=32BD  .

 

Lời giải:

Cho tam giác ABC với AB = 6 cm, AC = 9 cm. Lấy điểm D trên cạnh AC sao cho AD = 4 cm

Xét hai tam giác ABD và tam giác ACB có:

 ˆA chung

ABAC=ADAB  (do 69=46=23  )

Do đó, ∆ABD ᔕ ∆ACB (c.g.c).

Suy ra BDBC=ABAC=69=23  .

Nên BC = 32  BD.

Bài 9.27 trang 57 SBT Toán lớp 8 Tập 2: Cho tứ giác ABCD như Hình 9.6. Biết rằng AB = 2 cm, AC = 4 cm, AD = 8 cm và AC là phân giác của góc BAD. Chứng minh rằng CD = 2BC.

 

Lời giải:

Cho tam giác ABC với AB = 6 cm, AC = 9 cm. Lấy điểm D trên cạnh AC sao cho AD = 4 cm

Xét tam giác ABC và tam giác ACD có:

 ^BAC=^DAC (vì AC là tia phân giác của )

  ABAC=ACAD (do 24=48 )

Suy ra ∆ABC ᔕ ∆ACD (c.g.c).

Do đó, BCCD=ABAC=24=12 .

Suy ra CD = 2BC.

Bài 9.28 trang 57 SBT Toán lớp 8 Tập 2: Cho tam giác ABC và điểm D trên cạnh AC sao cho ^ABD=^BCA . Chứng minh rằng: AB2 = AD . AC.

 

Lời giải:

Cho tam giác ABC và điểm D trên cạnh AC sao cho góc ABD = góc BCA

Xét tam giác ABD và tam giác ACB có:

 ˆA chung

 ^ABD=^BCA (gt)

Do đó, ∆ABD ᔕ ∆ACB (g.g).

Suy ra ADAB=ABAC .

Nên AB2 = AD . AC.

Bài 9.29 trang 57 SBT Toán lớp 8 Tập 2: Cho hai điểm M, N lần lượt nằm trên các cạnh AB, AC của tam giác ABC sao cho ^ABN=^ACM . Gọi O là giao điểm của BN và CM. Chứng minh rằng:

a) AM . AB = AN . AC.

b) OM . OC = ON . OB.

 

Lời giải:

Cho tam giác ABC với AB = 6 cm, AC = 4 cm, BC = 5 cm. Trên tia đối của tia CA lấy điểm D

a)

Xét tam giác ABN và tam giác ACM có:

ˆA chung

 ^ABN=^ACM (gt)

Do đó, ∆ABN ᔕ ∆ACM (g.g).

Suy ra ABAC=ANAM  nên AM . AB = AN . AC.

b)

Tam giác BOM và tam giác CON có:

^MBO=^NCO (do ^ABN=^ACM )

 ^MOB=^NOC (hai góc đối đỉnh)

Nên ∆BOM ᔕ ∆CON (g.g).

Suy ra OMON=OBOC nên OM . OC = ON . OB.

Bài 9.30 trang 57 SBT Toán lớp 8 Tập 2: Cho tam giác ABC với AB = 6 cm, AC = 4 cm, BC = 5 cm. Trên tia đối của tia CA lấy điểm D sao cho CD = CB. Chứng minh rằng:

a) ∆ABC ᔕ ∆ADB.

b) ^ACB=2^ABC .

 

Lời giải:

Cho tam giác ABC với AB = 6 cm, AC = 4 cm, BC = 5 cm. Trên tia đối của tia CA lấy điểm D

a)

Ta có: AD = AC + DC = AC + BC = 4 + 5 = 9 (cm).

Xét tam giác ABC và tam giác ADB có:

ˆA chung

ABAD=ACAB  (69=46).

Do đó, ∆ABC ᔕ ∆ADB (c.g.c).

b)

Vì ∆ABC ᔕ ∆ADB (cmt) nên ^ABC=^ADB .

Mà tam giác BCD cân tại C (do CD = CB) nên ^CBD=^BDC  hay ^CBD=^ADB  .

Do đó, ^CBD=^ABC .

Vì góc ACB là góc ngoài tại đỉnh C của tam giác DBC nên ta có:

^ACB=^CDB+^CBD=2^CBD=2^ABC.

Vậy ^ACB=2^ABC .

Xem thêm các bài giải SBT Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Xem tất cả hỏi đáp với chuyên mục: Ba trường hợp đồng dạng của hai tam giác KNTT
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!