Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC của tam giác ABC sao cho AM . AB = AN . AC

Bài 9.21 trang 56 SBT Toán lớp 8 Tập 2: Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC của tam giác ABC sao cho AM . AB = AN . AC.

a) Chứng minh rằng ∆AMN ᔕ ∆ACB.

b) Lấy E, F lần lượt là trung điểm của MN, BC. Chứng minh rằng EAB^=FAC^ .

 

Trả lời

Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC

Vì AM . AB = AN . AC nên AMAC=ANAB .

Tam giác AMN và tam giác ABC có:

AMAC=ANAB

BAC^ chung.

Do đó, ∆AMN ᔕ ∆ACB (c.g.c).

b)

Vì ∆AMN ᔕ ∆ACB (cmt) nên AMN^=C^  và AMAC=MNCB .

Mà E, F lần lượt là trung điểm của MN, BC nên MN = 2ME, BC = 2FC.

Do đó: AMAC=MNCB=2ME2FC=MEFC .

Tam giác MAE và tam giác CAF có:

AME^=C^ (do AMN^=C^ );

AMAC=MEFC(cmt).

Do đó, ∆AME ᔕ ∆ACF (c.g.c). Suy ra EAM^=FAC^ (hai góc tương ứng).

Vậy EAB^=FAC^ .

Xem thêm các bài giải SBT Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả