Cho tam giác ABC và hai điểm P, Q lần lượt nằm trên các tia đối của tia AB và AC sao cho góc APQ = góc ACB. Chứng minh rằng

Bài 9.22 trang 56 SBT Toán lớp 8 Tập 2: Cho tam giác ABC và hai điểm P, Q lần lượt nằm trên các tia đối của tia AB và AC sao cho APQ^=ACB^  . Chứng minh rằng:

a) AP . AB = AQ . AC.

b) ∆APC ᔕ ∆AQB.

Trả lời

Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC

a)

Xét tam giác APQ và tam giác ACB có:

 PAQ^=BAC^ (hai góc đối đỉnh)

 APQ^=ACB^ (giả thiết)

Do đó, ∆APQ ᔕ ∆ACB (g.g) nên APAC=AQAB .

Suy ra: AP . AB = AQ . AC.

b)

Vì  APAC=AQAB nên APAQ=ACAB.

Xét tam giác APC và tam giác AQB có:

PAC^=BAQ^ (hai góc đối đỉnh),

APAQ=ACAB (chứng minh trên).

Do đó, ∆APC ᔕ ∆AQB (c.g.c).

Xem thêm các bài giải SBT Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả