Giải SBT Toán 8 (Kết nối tri thức) Bài 35: Định lí Pythagore và ứng dụng

Với giải sách bài tập Toán 8 Bài 35: Định lí Pythagore và ứng dụng sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 8 Bài 35. Mời các bạn đón xem:

Sách bài tập Toán 8 Bài 35: Định lí Pythagore và ứng dụng

Bài 9.31 trang 59 SBT Toán lớp 8 Tập 2: Cho tam giác ABC vuông tại A. Khẳng định nào sau đây là đúng ?

(1) AB2 + BC2 = AC2.

(2) AB + BC = AC.

(3) AB2 + AC2 = BC2.

(4) AB + AC = BC.

(5) AC2 + BC2 = AB2.

(6) AC + BC = AB.

Lời giải:

Vì tam giác ABC vuông tại A nên:

BC là cạnh huyền

Hai cạnh góc vuông là AB, AC.

Theo định lý Pythagore ta có:

BC2 = AB2 + AC2

Vậy khẳng đúng là khẳng định (3).

Bài 9.32 trang 59 SBT Toán lớp 8 Tập 2: Những bộ ba số đo nào dưới đây là độ dài ba cạnh của một tam giác vuông?

(1) 1 cm, 1 cm, 2 cm.

(2) 1 cm, 1 cm, 2  cm.

(3) 2 cm, 4 cm, 20 cm.

(4) 2 cm, 4 cm, 20  cm.

(5) 3 cm, 4 cm, 5 cm.

(6) 9 cm, 16 cm, 25 cm.

Lời giải:

(1) Vì 12 + 22 ≠ 22 nên bộ ba số đo 1 cm, 1 cm, 2 cm không là độ dài ba cạnh của một tam giác vuông.

(2) Vì 12 + 12 =  22 nên bộ ba số đo 1 cm, 1 cm, 2cm là độ dài ba cạnh của một tam giác vuông.

(3) Vì 22 + 42 ≠ 202 nên bộ ba số đo 2 cm, 4 cm, 20 cm không là độ dài ba cạnh của một tam giác vuông

(4) Vì 22 + 42 =  202 nên bộ ba số đo 2 cm, 4 cm,  20 cm là độ dài ba cạnh của một tam giác vuông.

(5) Vì 32 + 42 = 52 (= 25) nên bộ ba số đo 3 cm, 4 cm, 5 cm là độ dài ba cạnh của một tam giác vuông.

(6) Vì 92 + 162 ≠ 252 nên bộ ba số đo 9 cm, 16 cm, 25 cm không là độ dài ba cạnh của một tam giác vuông.

Bài 9.33 trang 59 SBT Toán lớp 8 Tập 2: Tính các độ dài x, y, z, t trong Hình 9.8

 

Tính các độ dài x, y, z, t trong Hình 9.8

Lời giải:

Áp dụng định lý Pythagore vào các tam giác vuông trong Hình 9.8, ta có:

+) x2 = 32 + 22 = 9 + 4 = 13 nên x =  (đvđd).

+) 22 + y2 = 252  nên y2 = 20 – 4 = 16, suy ra y = 4 (đvđd).

+) z2 = 32 + 12 = 9 + 1 = 10 nên z = 10  (đvđd).

+) t2 + 52 = 292  nên t2 = 29 – 25 = 4 nên t = 2 (đvđd).

Bài 9.34 trang 59 SBT Toán lớp 8 Tập 2: Cho tam giác ABC vuông cân tại đỉnh A có đường cao AH. Biết rằng AB = 4 cm, hãy tính độ dài cạnh đáy BC và chiều cao AH.

 

Lời giải:

Cho tam giác ABC vuông cân tại đỉnh A có đường cao AH

Vì tam giác ABC vuông cân tại A nên

AC = AB = 4 cm

B^=C^=45°

Tam giác AHB vuông tại H có B^=45° , suy ra tam giác AHB vuông cân tại H.

Nên AH = HB.

Tam giác AHC vuông tại H có C^=45°  , suy ra tam giác AHC vuông cân tại H.

Nên AH = HC.

Khi đó, HB = HC = AH.

Mà HB + HC = BC. Suy ra HB + HB = BC hay 2HB = BC.

Do đó, AH = HC = HB = 12 BC.

Áp dụng định lý Pythagore vào tam giác ABC vuông tại A ta có:

BC2 = AB2 + AC2 = 42 + 42 = 32.

Suy ra BC = 32  = 42  (cm).

Do đó, AH = 12 BC = 22   (cm).

Bài 9.35 trang 60 SBT Toán lớp 8 Tập 2: Hãy tính độ dài các cạnh của một hình thoi với hai đường chéo lần lượt có độ dài bằng 6 cm và 8 cm

 

Lời giải:

Hãy tính độ dài các cạnh của một hình thoi với hai đường chéo lần lượt có độ

Giả sử hình thoi ABCD có hai đường chéo AC = 6 cm, BD = 8 cm và O là giao điểm của AC và BD. Khi đó, O là trung điểm của AC, O là trung điểm của BD và AC vuông góc với BD tại O.

Suy ra OC = 12 AC = 3 cm, OD =12 BD = 4 cm và COD^=90° .

Do đó, tam giác COD vuông tại O.

Áp dụng định lí Pythagore ta có:

CD2 = OC2 + OD2 = 32 + 42 = 25.

Suy ra CD = 5 cm. Vậy độ dài cạnh của hình thoi là 5 cm.

Bài 9.36 trang 60 SBT Toán lớp 8 Tập 2: Cho tam giác ABC vuông tại đỉnh A, có BC = 26 cm và ABAC=512. Tính độ dài các cạnh AB, AC.

 

Lời giải:

Cho tam giác ABC vuông cân tại đỉnh A có đường cao AH

Xét tam giác ABC vuông tại A.

Áp dụng định lí Pythagore ta có:

AB2 + AC2 = BC2 (1)

Mà ABAC=512 nên AB = 512 AC, thay vào (1) ta có:

AC2+512AC2=262

169144AC2=676

AC2 = 576

Suy ra AC = 24 cm.

Do đó, AB = 512 .24 = 10 (cm).

Bài 9.37 trang 60 SBT Toán lớp 8 Tập 2: Cho tam giác ABC vuông tại đỉnh A. Gọi AD là đường cao của tam giác. Biết rằng BD = 2 cm, CD = 8 cm. Hãy tính độ dài các cạnh AB, AC và chiều cao AD của tam giác ABC.

 

Lời giải:

Cho tam giác ABC vuông cân tại đỉnh A có đường cao AH

Vì AD là đường cao của tam giác ABC nên AD vuông góc với BC.

Do đó, ADB^=ADC^=90°  .

Tam giác ABD và tam giác CAD có:

ADB^=ADC^=90° (cmt)

 BAD^=C^ (cùng phụ với góc DAC).

Do đó, ∆ABD ᔕ ∆CAD (g.g).

Suy ra ADCD=BDAD  nên AD2 = CD . BD = 8 . 2 = 16.

Do đó, AD = 4 cm.

Áp dụng định lý Pythagore trong tam giác vuông ABD vuông tại D có:

AB2 = AD2 + BD2 = 42 + 22 = 20.

Nên AB = 25 cm.

Áp dụng định lý Pythagore vào tam giác ACD vuông tại D có:

AC2 = AD2 + CD2 = 42 + 82 = 80.

Nên AC = 45  cm.

Bài 9.38 trang 60 SBT Toán lớp 8 Tập 2: Tìm độ dài cạnh huyền của một tam giác vuông biết rằng tỉ số của độ dài hai cạnh góc vuông là 3 : 4 và chu vi tam giác bằng 48cm.

Lời giải:

Giả sử tam giác ABC vuông tại A có: AB : AC = 3 : 4 và chu vi tam giác bằng 48 cm.

Vì AB : AC = 3 : 4 nên AB =34 AC.

Áp dụng định lý Pythagore vào tam giác ABC vuông tại A có:

BC2 = AB2 + AC2 =34AC2+AC2=2516AC2

Nên BC = 54AC .

Chu vi tam giác ABC là:

AB + BC + AC = 48

AC+34AC+54AC=48

3AC = 48

AC = 16 (cm)

Do đó, BC = 54AC  = 54.16  = 20 (cm).

Bài 9.39 trang 60 SBT Toán lớp 8 Tập 2: Tính diện tích của một tam giác cân, biết rằng tam giác đó có hai cạnh với độ dài bằng 4 cm và 8 cm.

Lời giải:

Vì tam giác cân có hai cạnh là 4 cm và 8 cm nên độ dài cạnh thứ ba của tam giác sẽ là 4 cm hoặc 8 cm.

Mà 4 + 4 = 8 không thỏa mãn bất đẳng thức tam giác nên ta loại trường hợp độ dài ba cạnh là 4 cm, 4 cm, 8 cm.

Do đó, độ dài ba cạnh của tam giác đó là 4 cm, 8 cm, 8 cm.

Giả sử tam giác ABC cân tại A có AB = AC = 8 cm, BC = 4 cm.

Tính diện tích của một tam giác cân, biết rằng tam giác đó có hai cạnh

Kẻ đường cao AH (H thuộc BC) của tam giác ABC cân tại A. Khi đó, H là trung điểm của BC nên BH=12BC = 2 cm.

Áp dụng định lý Pythagore vào tam giác ABH vuông tại H có:

AH2 + BH2 = AB2

Suy ra AH2 = AB2 – BH2 = 82 – 22 = 60.

Do đó, AH = 215  cm.

Diện tích tam giác ABC là: 12AHBC=122154=415   (cm2).

Bài 9.40 trang 60 SBT Toán lớp 8 Tập 2: Tính chiều cao và diện tích của một tam giác đều có cạnh bằng 4 cm.

 

Lời giải:

Tính chiều cao và diện tích của một tam giác đều có cạnh bằng 4 cm

Xét tam giác đều ABC có cạnh AB = AC = BC = 4 cm.

Kẻ đường cao AH của tam giác đều ABC.

Khi đó, đường cao AH đồng thời là đường trung tuyến. Do đó, ta có:

BH = 12 BC = 12.4 = 2 (cm).

Áp dụng định lý Pythagore vào tam giác ABH vuông tại H có:

AH2 + BH2 = AB2

Suy ra AH2 = AB2 – BH2 = 42 – 22 = 12.

Do đó, AH=12  =23  (cm).

Diện tích tam giác ABC là: 12AHBC=12234=43 (cm2).

Bài 9.41 trang 60 SBT Toán lớp 8 Tập 2: Một chiếc ti vi màn hình phẳng 32 inch với chiều ngang màn hình là 72 cm (1 inch = 2,54 cm). Tính chiều cao của màn hình ti vi đó.

 

Lời giải:

Một chiếc ti vi màn hình phẳng 32 inch với chiều ngang màn hình là 72 cm

Gọi chiều cao màn hình ti vi là h (cm).

Áp dụng định lý Pythagore cho tam giác vuông với hai cạnh góc vuông là hai cạnh của màn hình chiếc ti vi.

Khi đó, cạnh huyền của tam giác vuông này có độ dài bằng: 32 . 2,54 = 81,28 (cm).

Áp dụng định lý Pythagore cho tam giác vuông ta suy ra:

h2 = 81,282 – 722 = 1 422,4384

Suy ra h = 1422,4384   ≈ 37,72 (cm).

Xem thêm các bài giải SBT Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Bài 33: Hai tam giác đồng dạng

Bài 34: Ba trường hợp đồng dạng của hai tam giác

Bài 36: Các trường hợp đồng dạng của hai tam giác vuông

Bài 37: Hình đồng dạng

Bài tập cuối chương 9

Xem tất cả hỏi đáp với chuyên mục: Định lí Pythagore và ứng dụng KNTT
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!