Xét tính liên tục của các hàm số sau: a) f(x) = x^3 ‒ x^2 + 2; b) f(x) = x+1 / x^2-4x

Bài 5 trang 90 SBT Toán 11 Tập 1: Xét tính liên tục của các hàm số sau:

a) f(x) = x3 ‒ x2 + 2;

b) fx=x+1x24x;

c) fx=2x1x2x+1;

d) fx=x22x.

Trả lời

a) f(x) là hàm đa thức có tập xác định là ℝ nên nó liên tục trên ℝ.

b) Ta có: x2 ‒ 4x ≠ 0 ⇔ x ≠ 0 và x ≠ 4.

f(x) là hàm số phân thức có tập xác định D = ℝ ∖ {0; 4} nên nó liên tục trên các khoảng (‒∞; 0), (0; 4) và (4; +∞).

c) Ta có: x2x+1=x122+34>0,x

f(x) là hàm số phân thức có tập xác định ℝ nên nó liên tục trên ℝ.

d) Ta có: x2 ‒ 2x ≥ 0 ⇔ x ≤ 0 và x ≥2

f(x) là hàm số phân thức có tập xác định D = (‒∞; 0] ∪ [2; +∞) nên nó liên tục trên các khoảng (‒∞; 0] và [2; +∞).

Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Giới hạn của dãy số

Bài 2: Giới hạn của hàm số

Bài 3: Hàm số liên tục

Bài tập cuối chương 3

Câu hỏi cùng chủ đề

Xem tất cả