Giải SBT Toán 11 (Chân trời sáng tạo) Bài 1: Giới hạn của dãy số

Với giải sách bài tập Toán 11 Bài 1: Giới hạn của dãy số sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 1. Mời các bạn đón xem:

Sách bài tập Toán 11 Bài 1: Giới hạn của dãy số

Bài 1 trang 75 SBT Toán 11 Tập 1: Tìm các giới hạn sau:

a) lim2+5n;

b) lim3n2n2;

c) lim34n2+5n2;

d) lim33n1+1n3.

Lời giải:

a) lim2+5n=lim2+lim5n=2+0=2.

b) lim3n2n2=lim3nlim2n2=00=0.

c) lim34n2+5n2=lim6+15n28n20n3

=lim6+lim15n2lim8nlim20n3

= 6 + 0 ‒ 0 ‒ 0 = 6.

d) lim33n1+1n3=lim3lim3nlim1+lim1n3=301+0=3.

Bài 2 trang 75 SBT Toán 11 Tập 1: Tìm các giới hạn sau:

a) lim2n36n+1;

b) lim3n1n2+n;

c) lim2n12n+32n2+4;

d) lim4n+1n2+3n+n;

e) limnn+1n;

g) lim1n2+nn.

Lời giải:

a) lim2n36n+1=lim23n6+1n=lim2lim3nlim6+lim1n=206+0=26=13.

b) lim3n1n2+n=lim3n1n21+1n=lim3nlim1n2lim1+lim1n=001+0=0.

c) lim2n12n+32n2+4=lim21n2+3n2+4n2=222=2

d) lim4n+1n2+3n+n=lim4+1n1+3n+1=4+lim1n1+lim3n+1=41+1=2

e) limnn+1n=limnn+1nn+1+nn+1+n

=limnn+1+n=lim11+1n+1

=11+lim1n+1=12.

g) lim1n2+nn=limn2+n+nn2+nnn2+n+n

=limn2+n+nn=lim1+1n+1=2. 

Bài 3 trang 75 SBT Toán 11 Tập 1: Tìm các giới hạn sau:

a) lim32n;

b) lim3n4n1;

c) lim3n2n3n+2n;

d) lim4n+13n+4n.

Lời giải:

a) lim32n=0.

b) lim3n4n1=lim34n114n=lim34n1lim14n=010=0.

c) lim3n2n3n+2n=lim123n1+23n=1lim23n1+lim23n=101+0=1.

d) lim4n+13n+4n=lim434n+1=4lim34n+1=40+1=4

Bài 4 trang 76 SBT Toán 11 Tập 1: Cho hai dãy số (un) và (vn) có limun = 3, limvn = 4. Tìm các giới hạn sau:

a) lim(3un ‒ 4); b) lim(un + 2vn);

c) lim(un ‒ vn)2; d) lim2unvn2un

Lời giải:

a) lim(3un ‒ 4) = 3limun ‒ lim4 = 3.3 ‒ 4 = 5.

b) lim(un + 2vn) = limun + 2limvn = 3 + 2.4 = 11.

c) lim(un ‒ vn)2 = (limun ‒ limvn)2 = (3 ‒ 4)2 = 1.

d) lim2unvn2un=2limunlimvn2limun=23423=3.

Bài 5 trang 76 SBT Toán 11 Tập 1: Cho dãy số (un) thoả mãn limun = 3. Tìm giới hạn lim2n+3n2un.

Lời giải:

Ta có:

lim2n+3n2un= lim2n+3n1nun=lim2n+3nlim1nun

=lim2+3n1limnun=213=23.

Bài 6 trang 76 SBT Toán 11 Tập 1: Tìm các giới hạn sau:

a) lim(1 + 3n – n2);

b) limn3+3n2n1;

c) limn2n+n;

d) lim(3n+1 – 5n).

Lời giải:

a) 1+3nn2=n21n2+3n1

Ta có limn2 = +∞ và lim1n2+3n1=0+01=1.

Suy ra lim1+3nn2=limn21n2+3n1=.

b) n3+3n2n1=n31+3n2n21n=n21+3n221n

Ta có limn2 = +∞ và lim1+3n221n=12.

Suy ra limn3+3n2n1=limn21+3n221n=+.

c) n2n+n=n11n+1

Ta có limn = +∞ và lim11n+1=2.

Suy ra limn2n+n=limn11n+1=+.

d) 3n+15n=5n3n+15n1=5n335n1

Ta có lim5n = +∞ và lim335n1=1

Suy ra lim3n+15n=lim5n335n1=.

Bài 7 trang 76 SBT Toán 11 Tập 1: Tuỳ theo giá trị của a > 0, tìm giới hạn limanan+1.

Lời giải:

⦁ Nếu 0 < a < 1 thì liman = 0 nên limanan+1=limanliman+1=00+1=0.

⦁ Nếu a = 1 thì limanan+1=lim1n1n+1=lim11+1=lim12=12.

⦁ Nếu a > 1, ta viết anan+1=11+1an(chia cả tử và mẫu cho an)

Do a > 1 nên 0<1a<1, suy ra lim1an=0. Từ đó,

limanan+1=lim11+1an=11+lim1an=11+0=1.

Vậy limanan+1 bằng 0 nếu 0 < a < 1; bằng 12 nếu a = 1; bằng 1 nếu a > 1.

Bài 7 trang 76 SBT Toán 11 Tập 1: Tuỳ theo giá trị của a > 0, tìm giới hạn limanan+1.

Lời giải:

⦁ Nếu 0 < a < 1 thì liman = 0 nên limanan+1=limanliman+1=00+1=0.

⦁ Nếu a = 1 thì limanan+1=lim1n1n+1=lim11+1=lim12=12.

⦁ Nếu a > 1, ta viết anan+1=11+1an(chia cả tử và mẫu cho an)

Do a > 1 nên 0<1a<1, suy ra lim1an=0. Từ đó,

limanan+1=lim11+1an=11+lim1an=11+0=1.

Vậy limanan+1 bằng 0 nếu 0 < a < 1; bằng 12 nếu a = 1; bằng 1 nếu a > 1.

Bài 9 trang 76 SBT Toán 11 Tập 1: Viết các số thập phân vô hạn tuần hoàn sau thành phân số:

a) 0,(7) = 0,777...; b) 1,(45) = 1,454545...

Lời giải:

a) 0,(7) = 0,777...

= 0,7 + 0,07 + 0,007 + 0,0007 + 0,00007...

=0,7+0,7110+0,71102+0,71103...

Đây là tổng cấp số nhân lùi vô hạn với số hạng đầu u1 = 0,7 và công bội q=110 thõa mãn |q| < 1.

Tổng này bằng 0,71110=0,70,9=79.

Vậy 0,7=0,777...=79.

b) 1,(45) = 1,454545... = 1 + 0,454545…

Ta có 0,454545... = 0,45 + 0,0045 + 0,000045 + …

=0,45+0,451100+0,4511002+...

Đây là tổng cấp số nhân lùi vô hạn với số hạng đầu u1 = 0,45 và công bội q=1100 thõa mãn |q| < 1.

Tổng này bằng 0,4511100=0,450,99=4599=511.

Vậy 1,45=1,454545...=1+511=1611.

Bài 10 trang 76 SBT Toán 11 Tập 1: Tại một nhà máy, người ta đo được rằng 80% lượng nước sau khi sử dụng được xử lí và tái sử dụng. Với 100 m3 ban đầu được sử dụng lần đầu tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?

Lời giải:

Lượng nước ban đầu là u1 = 100

Lượng nước sau khi xử lý và tái sử dụng lần 1 là: 100.80% = 100.0,8

Lượng nước sau khi xử lý và tái sử dụng lần 2 là: 100.80%.80% = 100.(0,8)2

Lượng nước sau khi xử lý và tái sử dụng lần 3 là: 100.80%.80%.80% = 100.(0,8)3

....

Vậy tổng lượng nước sau khi xử lý và tái sử dụng mãi mãi là cấp số nhân lùi vô hạn với số hạng đầu là u1 = 100 và công bội q = 0,8 thỏa mãn |q| < 1.

Tổng này bằng:

100+1000,8+1000,82+1000,83+=10010,8=1000,2

=500   m3.

Bài 11 trang 76 SBT Toán 11 Tập 1: Cho tam giác OA1A2 vuông cân tại A2 có cạnh huyền OA1 bằng a. Bên ngoài tam giác OA1A2, vẽ tam giác OA2A3 vuông cân tại A3. Tiếp theo, bên ngoài tam giác OA2A3, vẽ tam giác OA3A4 vuông cân tại A4. Cứ tiếp tục quá trình như trên, ta vẽ được một dãy các hình tam giác vuông cân (Hình 2). Tính độ dài đường gấp khúc A1A2A3A4...

Cho tam giác OA1A2 vuông cân tại A2 có cạnh huyền OA1 bằng a

Lời giải:

Ta có các góc A1OA2^,A2OA3^,A3OA4^, đều bằng 45°. Ta có:

A1A2=OA2=OA1cos45=a22;

A2A3=OA3=OA2cos45=a2222=a222

A3A4=OA4=OA3cos45=a22222=a223

Vậy độ dài các đoạn thẳng A1A2, A2A3, A3A4, ... tạo thành cấp số nhân lùi vô hạn với số hạng đầu u1=a22 và công bội q=22 thỏa mãn |q| < 1.

Do đó, độ dài đường gấp khúc A1A2A3A4... là

l=a221122=a222=a222+2=a1+2.

Bài 12 trang 77 SBT Toán 11 Tập 1: Cho tam giác OMN vuông cân tại O, OM= ON = 1. Trong tam giác OMN, vẽ hình vuông OA1B1C1 sao cho các đỉnh A1, B1, C1 lần lượt nằm trên các cạnh OM, MN, ON. Trong tam giác A1MB1, vẽ hình vuông A1A2B2C2 sao cho các đỉnh A2, B2, C2 lần lượt nằm trên các cạnh A1M, MB1, A1B1. Tiếp tục quá trình đó, ta được một dãy các hình vuông (Hình 3). Tính tổng diện tích các hình vuông này.

Lời giải:

Cho tam giác OMN vuông cân tại O, OM= ON = 1. Trong tam giác OMN, vẽ hình vuông OA1B1C1

Độ dài cạnh của các hình vuông lần lượt là

a1=12;a2=12a1=1212=122;a3=12a2=12122=123;

Diện tích của các hình vuông lần lượt là

S1=a12=122=14,

S2=a22=1222=142,

S3=a32=1232=1223=143,

Các diện tích S1, S2, S3,... tạo thành cấp số nhân lùi vô hạn với số hạng đầu là S1=14 và công bội bằng 14.

Do đó, tổng diện tích các hình vuông là S=141114=13.

Bài 13 trang 77 SBT Toán 11 Tập 1: Trong mặt phẳng toạ độ Oxy, đường thẳng d: x + y = 2 cắt trục hoành tại điểm A và cắt đường thẳng dn:y=2n+1nx tại điểm Pn (n ∈ ℕ*). Kí hiệu Sn là diện tích của tam giác OAPn. Tìm limSn.

Trong mặt phẳng toạ độ Oxy, đường thẳng d: x + y = 2 cắt trục hoành tại điểm A và cắt đường thẳng

Lời giải:

Trong mặt phẳng toạ độ Oxy, đường thẳng d: x + y = 2 cắt trục hoành tại điểm A và cắt đường thẳng

Ta có: A(2; 0) nên OA = 2.

Đường thẳng d: x + y = 2 ⇔ y = 2 – x nên tanOAPn^=1=1OAPn^=45°

Pn(x0; y0) ∈ d nên Pn(x0; 2 – x0)

Pn(x0; y0) ∈ d nên ta có:

y0=2n+1nx02x0=2n+1nx03n+1nx0=2

x0=2n3n+1y0=22n3n+1=4n+23n+1

Pn2n3n+1;4n+23n+1

Gọi H là hình chiếu của P lên Ox. Khi đó PnH=y0=4n+23n+1

APn=PnHsin45°=4n+23n+1:22=4n+23n+12

Ta có Sn=12OAAPnsinOAPn^=1224n+23n+1222=4n+23n+1.

Khi đó  limSn=lim4n+23n+1=lim4+2n3+1n=43.

Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Cấp số nhân

Bài tập cuối chương 2

Bài 2: Giới hạn của hàm số

Bài 3: Hàm số liên tục

Bài tập cuối chương 3

Câu hỏi liên quan

a) lim(2n-3 / 6n+1) = lim(2-3/n / 6+1/n) = (lim2 - lim3/n)/(lim6 + lim1/n) = 2-0 / 6+0 = 2/6 = 1/3
Xem thêm
a) 1 + 3n - n^2 = n^2*(1/n^2 + 3/n - 1)
Xem thêm
a) lim(căn 3 / 2)^n = 0
Xem thêm
Ta có:
Xem thêm
a) lim(2 + 5/n) = lim2 + lim(5/n) = 2+0 = 2.
Xem thêm
Lượng nước ban đầu là u1 = 100
Xem thêm
a) lim(3un ‒ 4) = 3limun ‒ lim4 = 3.3 ‒ 4 = 5.
Xem thêm
Độ dài cạnh của các hình vuông lần lượt là
Xem thêm
Ta có các góc A1OA2, A2OA3, A3OA4,... đều bằng 45°. Ta có:
Xem thêm
a) 0,(7) = 0,777...
Xem thêm
Xem tất cả hỏi đáp với chuyên mục: Giới hạn của dãy số (SBT CTST)
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!