Sách bài tập Toán 11 Bài 2: Hai đường thẳng song song
a) Chứng minh MN song song với PQ.
Lời giải:
a) • ABCD là hình thang nên AD // BC
Ta có: M ∈ SB, mà SB ⊂ (SBC) nên M ∈ (SBC);
M ∈ (ADJ)
Do đó M ∈ (ADJ) ∩ (SBC).
Tương tự, N ∈ (ADJ) ∩ (SBC).
Suy ra (ADJ) ∩ (SBC) = MN
Mà AD // BC; AD ⊂ (ADJ); BC ⊂ (SBC);
Suy ra MN // AD // BC. (1)
• Chứng minh tương tự như trên, ta cũng có PQ // AD // BC. (2)
Từ (1), (2) suy ra MN // PQ.
b) Ta có: E ∈ AM, mà AM ⊂ (ADJ) nên E ∈ (ADJ);
E ∈ BP, mà BP ⊂ (IBC) nên E ∈ (IBC).
Do đó E ∈ (ADJ) ∩ (IBC).
Tương tự ta cũng có F ∈ (ADJ) ∩ (IBC).
Suy ra (ADJ) ∩ (IBC) = EF.
Mà AD // BC, AD ⊂ (ADJ), BC ⊂ (IBC).
Suy ra EF // AD // BC
Lại có MN // PQ // AD // BC (chứng minh câu a)
Do đó EF // MN // PQ.
b) Tứ giác MNJI là hình gì. Tìm điểu kiện để tứ giác MNJI là hình bình hành.
Lời giải:
a) Xét ∆ABC có , suy ra MN // BC (định lý Thalès đảo).
b) Xét ∆BCD có I, J lần lượt là trung điểm của BD, CD nên IJ là đường trung bình của tam giác DBC, suy ra IJ // BC.
Mà MN // BC (câu a) nên IJ // MN, do đó MNJI là hình thang.
MNJI là hình bình hành khi và chỉ khi MI // NJ // AD
Suy ra MI là đường trung bình của tam giác ADB.
Mà I là trung điểm của BD nên M là trung điểm AB.
b) (SAB) và (MDC), với M là một điểm bất kì thuộc cạnh SA.
Lời giải:
a) Ta có S ∈ (SAD) và S ∈ (SBC) nên S ∈ (SAD) ∩ (SBC),
Mặt khác, AD ⊂ (SAD), BC ⊂ (SBC) và AD // BC (do ABCD là hình bình hành)
Suy ra (SAD) ∩ (SBC) = d với d là đường thẳng đi qua S, d //AD // BC.
b) Ta có M ∈ SA, mà SA ∈ (SAB) nên M ∈ (SAB);
Lại có M ∈ (MDC)
Nên M ∈ (SAB) ∩ (MDC).
Ta có AB ⊂ (SAB), DC ⊂ (MDC) và AB // DC (do ABCD là hình bình hành).
Suy ra (SAB) ∩ (MDC) = Mx với Mx // AB // DC.
Gọi N là giao điểm của SB và Mx.
Khi đó (SAB) ∩ (MDC) = MN.
a) Tìm các giao tuyến: d1 = (SAB) ∩ (SCD); d2 = (SCD) ∩ (MAB).
Lời giải:
a) • S ∈ (SAD) và S ∈ (SBC) nên S ∈ (SAB) ∩ (SDC).
Mặt khác có AB ⊂ (SAB), CD ⊂ (SDC) và AB // CD (do ABCD là hình thang)
Suy ra (SAB) ∩ (SCD) = d1 với d1 là đường thẳng đi qua S và d1 // AB // CD.
• Ta có M ∈ SD, mà SD ∈ (SCD) nên M ∈ (SCD)
Lại có M ∈ (MAB)
Suy ra (SCD) ∩ (MAB) = M
Mặt khác có AB ⊂ (MAB), CD ⊂ (SCD) và AB // CD
Suy ra (SCD) ∩ (MAB) = d2 với d2 là đường thẳng đi qua M và d2 // AB // CD.
b) Theo câu a, ta có d1 // AB // CD và d2 // AB // CD
Suy ra d1 // d2.
Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: