Sách bài tập Toán 11 Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian
a) Tìm giao điểm của EF với (SAC).
b) Tìm giao điểm của BC với (AEF).
Lời giải:
a) ⦁ Trong mặt phẳng (ABCD), gọi O = AC ∩ BD.
Ta có O ∈ AC, AC ⊂ (SAC) nên O ∈ (SAC)
O ∈ BD, BD ⊂ (SBD) nên O ∈ (SBD)
Do đó O ∈ (SAC) ∩ (SBD)
⦁ Lại có S ∈ (SAC) và S ∈ (SBD) nên S ∈ (SAC) ∩ (SBD)
Suy ra (SAC) ∩ (SBD) = SO.
Trong mặt phẳng (SBD), gọi I = EF ∩ SO.
Ta có I ∈ SO, SO ⊂ (SAC) nên I ∈ (SAC)
Vậy EF ∩ (SAC) = I.
b) ⦁ Trong mặt phẳng (SBD), gọi K = EF ∩ BD.
Ta có K ∈ EF, EF ⊂ (AEF) nên K ∈ (AEF);
K ∈ BD, BD ⊂ (ABCD) nên K ∈ (ABCD)
Do đó K ∈ (ABCD) ∩ (AEF).
Lại có A ∈ (ABCD) và ∈ (AEF) nên A = (ABCD) ∩ (AEF).
Suy ra (ABCD) ∩ (AEF) = AK.
⦁ Trong mặt phẳng (ABCD), gọi H = BC ∩ AK.
Ta có H ∈ AK, AK ⊂ (AEF) nên H ∈ (AEF).
Vậy BC ∩ (AEF) = H.
Lời giải:
Ta có: I là giao điểm của DE và AB.
Suy ra:
⦁ I ∈ DE, mà DE ⊂ (DEF) nên I ∈ (DEF);
⦁ I ∈ AB, mà AB ⊂ (ABC) nên I ∈ (ABC).
Do đó I ∈ (DEF) ∩ (ABC).
Tương tự, ta có J, K cũng thuộc giao tuyến của hai mặt phẳng (DEF), (ABC).
Vậy I, J, K thẳng hàng.
Lời giải:
Gọi O là giao điểm của HF và IG.
Ta có:
⦁ O ∈ HF, mà HF ⊂ (ACD), suy ra O ∈ (ACD);
⦁ O ∈ IG, mà IG ⊂ (BCD), suy ra O ∈ (BCD).
Do đó, O ∈ (ACD) ∩ (BCD) (1)
Mặt khác, (ACD) ∩ (BCD) = CD (2)
Từ (1) và (2), suy ra O ∈ CD.
Lại có O = HF ∩ IG nên O là giao điểm của ba đường thẳng CD, IG, HF.
Vậy ba đường thẳng CD, IG, HF cùng đi qua một điểm.
Lời giải:
⦁ Ta có EF ⊂ (ABC) và EF ⊂ (EFG) nên (EFG) ∩ (ABC) = EF.
⦁ Trong mặt phẳng (ABC), gọi I là giao điểm của EF và BC.
Trong mặt phẳng (BCD), gọi H là giao điểm của IG và CD.
Ta có H ∈ IG, mà IG ⊂ (EFG) nên H ∈ (EFG)
Lại có F ∈ (EFG) nên FH ⊂ (EFG) (1)
Ta cũng có F ∈ AC, mà AC ⊂ (ACD)
H ∈ CD, mà CD ⊂ (ACD)
Do đó FH ⊂ (ACD) (2)
Từ (1) và (2) suy ra (EFG) ∩ (ACD) = FH.
⦁ Tương tự, ta cũng có:
HG ⊂ (EFG) và HG ⊂ (BCD) nên (EFG) ∩ (BCD) = HG;
GE ⊂ (EFG) và GE ⊂ (ABD) nên (EFG) ∩ (ABD) = GE.
Vậy (EFG) ∩ (ACD) = FH, (EFG) ∩ (BCD) = HG, (EFG) ∩ (ABD) = GE.
Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: