Sách bài tập Toán 11 Bài 2: Giới hạn của hàm số
Bài 1 trang 84 SBT Toán 11 Tập 1: Sử dụng định nghĩa, tìm các giới hạn sau:
a)
b)
c)
Lời giải:
a) Giả sử (xn) là dãy số bất kì thỏa mãn limxn = ‒1.
Ta có:
Vậy
b) Giả sử (xn) là dãy số bất kì thỏa mãn với mọi n và limxn = 2.
Ta có:
Vậy
c) Giả sử (xn) là dãy số bất kì thỏa mãn limxn = +∞.
Ta có:
Vậy
Bài 2 trang 84 SBT Toán 11 Tập 1: Tìm các giới hạn sau:
a)
b)
c)
d)
Lời giải:
a)
b)
= (5.2 ‒ 1)(2 ‒ 4.2) = ‒54.
c)
d)
Bài 3 trang 84 SBT Toán 11 Tập 1: Tìm các giới hạn sau:
a)
b)
c)
d)
e)
g)
Lời giải:
a)
b)
c)
d)
e)
g)
Bài 4 trang 84 SBT Toán 11 Tập 1: Cho hai hàm số f(x) và g(x) có và Tìm các giới hạn:
a)
b)
Lời giải:
a)
b)
Bài 5 trang 84 SBT Toán 11 Tập 1: Cho hai hàm số f(x) và g(x) có và
Tìm
Lời giải:
Ta có
Suy ra
Bài 6 trang 84 SBT Toán 11 Tập 1: Cho hàm số
Tìm các giới hạn và
Lời giải:
Ta có:
⦁
⦁
⦁ Vì nên
Bài 7 trang 84 SBT Toán 11 Tập 1: Cho hàm số
Tìm giá trị của tham số a sao cho tồn tại giới hạn
Lời giải:
Ta có:
Để tồn tại thì
Tức là suy ra a = 8.
Bài 8 trang 85 SBT Toán 11 Tập 1: Mỗi giới hạn sau có tồn tại không? Nếu có, hãy tìm giới hạn đó.
a)
b)
Lời giải:
a) Ta có:
⦁
⦁
Do nên tồn tại giới hạn và
b) Ta có:
⦁
⦁
Do nên không tồn tại giới hạn
Bài 9 trang 85 SBT Toán 11 Tập 1: Tìm các giới hạn sau:
a)
b)
c)
d)
Lời giải:
a)
b)
c) Với x < 0 thì nên ta có:
d)
Bài 10 trang 85 SBT Toán 11 Tập 1: Tính các giới hạn sau:
a)
b)
c)
Lời giải:
a)
Ta có và
Suy ra
b)
Ta có và
Suy ra
c)
Ta có và
Suy ra
Bài 11 trang 85 SBT Toán 11 Tập 1: Tìm giá trị của các tham số a và b, biết rằng:
a)
b)
Lời giải:
a) Do nên để tồn tại giới hạn hữu hạn trước hết ta phải có hay 2a + b = 0, suy ra b = ‒2a.
Khi đó,
Suy ra a = 5 và b = ‒10.
b) Do nên để tồn tại giới hạn hữu hạn trước hết ta phải có hay a + b = 0, suy ra b = ‒a.
Khi đó,
Suy ra hay a = 6, suy ra b = ‒6.
Bài 12 trang 85 SBT Toán 11 Tập 1: Trong mặt phẳng toạ độ Oxy, cho điểm M(t, t2), t > 0, nằm trên đường parabol y = x2. Đường trung trực của đoạn thẳng OM cắt trục tung tại N. Điểm N dần đến điểm nào khi điểm M dần đến điểm O?
Lời giải:
Trung điểm của đoạn thẳng OM là
Đường trung trực của OM nhận làm vectơ pháp tuyến và đi qua điểm nên có phương trình .
Thay x = 0 vào phương trình của d, ta nhận được .
Suy ra
Điểm M dần đến điểm O khi t dần đến 0+. Ta có .
Suy ra khi điểm dần đến điểm thì điểm dần đến điểm .
Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Bài tập cuối chương 2
Bài 1: Giới hạn của dãy số
Bài 3: Hàm số liên tục
Bài tập cuối chương 3