Cho hai hàm số f(x) = x ‒ 1 và g(x) = x^2 ‒ 3x + 2. Xét tính liên tục của các hàm số
196
06/11/2023
Bài 7 trang 90 SBT Toán 11 Tập 1: Cho hai hàm số f(x) = x ‒ 1 và g(x) = x2 ‒ 3x + 2. Xét tính liên tục của các hàm số:
a) y = f(x).g(x);
b) y=f(x)g(x);
c) y=1√f(x)+g(x).
Trả lời
a) Ta có y = f(x).g(x) = (x ‒ 1)(x2 ‒ 3x + 2)
Hàm số trên là hàm đa thức có tập xác định là ℝ nên nó liên tục trên ℝ.
b) Ta có y=f(x)g(x)=x−1x2−3x+2
Ta có: x2 ‒ 3x + 2 ≠ 0 ⇔ x ≠ 1 và x ≠ 2.
Hàm số trên là hàm số phân thức có tập xác định D = ℝ ∖ {1; 2} nên nó liên tục trên các khoảng (‒∞; 1), (1; 2) và (2; +∞).
c) Ta có y=1√f(x)+g(x)=1√x−1+x2−3x+2
=1√x2−2x+1=1√(x−1)2
Ta có: (x – 1)2> 0 ⇔ x ≠ 1
Hàm số trên là hàm phân thức có tập xác định D = ℝ \ {1} nên nó liên tục trên các khoảng (‒∞; 1) và (1; +∞).
Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Giới hạn của dãy số
Bài 2: Giới hạn của hàm số
Bài 3: Hàm số liên tục
Bài tập cuối chương 3