Trong mặt phẳng, xét đường elip (E) là tập hợp các điểm M sao cho MF1 + MF2 = 2a, ở đó F1F2 = 2c (với a > c > 0)
267
10/06/2023
Hoạt động 2 trang 94 Toán 10 Tập 2: Trong mặt phẳng, xét đường elip (E) là tập hợp các điểm M sao cho MF1 + MF2 = 2a, ở đó F1F2 = 2c (với a > c > 0).
Ta chọn hệ trục tọa độ Oxy có gốc là trung điểm của F1F2, trục Oy là đường trung trực của F1F2 và F2 nằm trên tia Ox (Hình 52). Khi đó, F1(– c; 0) và F2(c; 0) là hai tiêu điểm của elip (E). Chứng minh rằng:
a) A1(– a; 0) và A2(a; 0) đều là giao điểm của elip (E) với trục Ox.
b) B1(0; – b) và B2(0; b), ở đó , đều là giao điểm của elip (E) với trục Oy.
Trả lời
a) (vì a > c > 0 nên a – c > 0).
Suy ra A1F1 + A2F2 = (a – c) + (a + c) = 2a.
Vậy điểm A1(– a; 0) thuộc elip (E).
Mà A1(– a; 0) thuộc trục Ox nên A1(– a; 0) là giao điểm của elip (E) với trục Ox.
Tương tự, ta chứng minh được A2(a; 0) là giao điểm của elip (E) với trục Ox.
b) Ta có:
(vì nên và a > 0 nên |a| = a).
Tương tự: (do a > 0).
Suy ra B2F1 = B2F2 = a nên B2F1 + B2F2 = a + a = 2a.
Do đó, B2(0; b) thuộc elip (E).
Mà B2(0; b) thuộc trung Oy nên B2(0; b) là giao điểm của elip (E) với trục Oy.
Tương tự, ta chứng minh được: B1(0; – b) là giao điểm của elip (E) với trục Oy.
Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 3: Phương trình đường thẳng
Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng
Bài 5: Phương trình đường tròn
Bài 6: Ba đường conic
Bài tập cuối chương 7
Thực hành phần mềm Geogebra