Cho elip (E) có phương trình chính tắc x^2 /49 + y^2 /25 =1. Tìm tọa độ các giao điểm của (E) với trục Ox, Oy và tọa độ các tiêu điểm của (E)

Bài 2 trang 102 Toán 10 Tập 2Cho elip (E) có phương trình chính tắc x249+y225=1.Tìm tọa độ các giao điểm của (E) với trục Ox, Oy và tọa độ các tiêu điểm của (E).

 

Trả lời

Ta có: x249+y225=1x272+y252=1.

+ Trục hoành Ox: y = 0, tọa độ giao điểm của (E) với trục hoành là nghiệm của hệ

x272+y252=1y=0.

Giải hệ trên ta được 2 nghiệm (7; 0) và (– 7; 0).

Vậy tọa độ các giao điểm của (E) với trục Ox là A1(– 7; 0), A2(7; 0).

+ Trục tung Oy: x = 0, tọa độ giao điểm của (E) với trục tung là nghiệm của hệ

x=0x272+y252=1.

Giải hệ trên ta được 2 nghiệm là (0; – 5), (0; 5).

Vậy tọa độ các giao điểm của (E) với trục Oy là B1(0; – 5), B2(0; 5).

+ Ta có: x272+y252=1.

Vì a > b > 0 nên elip (E) có a = 7, b = 5.

Suy ra c2 = a2 – b2 = 72 – 52 = 24.

Do đó, c=24=26.

Vậy tọa độ các tiêu điểm của (E) là F126;  0,  F226;  0.

Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh diều hay, chi tiết khác:

Bài 3: Phương trình đường thẳng

Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Bài 5: Phương trình đường tròn

Bài 6: Ba đường conic

Bài tập cuối chương 7

Thực hành phần mềm Geogebra

Câu hỏi cùng chủ đề

Xem tất cả