Ta biết rằng Mặt Trăng chuyển động quanh Trái Đất theo quỹ đạo là một elip mà Trái Đất là một tiêu điểm. Elip đó có A1A2 = 768 800 km và B1B2 = 767 619 km

Bài 4 trang 102 Toán 10 Tập 2Ta biết rằng Mặt Trăng chuyển động quanh Trái Đất theo quỹ đạo là một elip mà Trái Đất là một tiêu điểm. Elip đó có A1A2 = 768 800 km và B1B2 = 767 619 km (Nguồn: Ron Larson (2014), Precalculus Real Mathematics, Real People, Cengage(Hình 62). Viết phương trình chính tắc của elip đó.

Giải Toán 10 Bài 6 (Cánh diều): Ba đường conic (ảnh 1)

Trả lời

Phương trình chính tắc của elip cần lập có dạng x2a2+y2b2=1 với a > b > 0.

+ Trục Oy là đường trung trực của đoạn A1A2 nên O là trung điểm của A1A2 

Suy ra OA2 = A1A22=768  8002=384  400.

Vì điểm A2 nằm trên trục Ox về phía bên phải điểm O nên A2(384 800; 0).

Điểm A2 thuộc elip (E) nên

3848002a2+02b2=1a2=3848002a=384800 (do a > 0).

+ Trục Ox là đường trung trực của đoạn B1B2 nên O là trung điểm của B1B2

Suy ra OB2 = B1B22=767  6192=383809,5.

Vì điểm B2 nằm trên trục Oy về phía bên trên điểm O nên B2(0; 383 809,5).

Elip (E) cắt trục Oy tại B2(0; 338309,5), thay vào phương trình elip ta được:

02a2+338309,52b2=1b2=338309,52b=338309,5 (do b > 0).

Do 384 800 > 383 809,5 nên a > b > 0 (thỏa mãn).

Vậy phương trình chính tắc của elip (E) là x2384  8002+y2383  809,52=1.

Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh diều hay, chi tiết khác:

Bài 3: Phương trình đường thẳng

Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Bài 5: Phương trình đường tròn

Bài 6: Ba đường conic

Bài tập cuối chương 7

Thực hành phần mềm Geogebra

Câu hỏi cùng chủ đề

Xem tất cả