Trên màn hình ra đa của đài kiểm soát không lưu (được coi như mặt phẳng tọa độ Oxy với đơn vị trên các trục tính theo ki-lô-mét), một máy bay trực thăng chuyển động

Câu hỏi khởi động trang 67 Toán lớp 10 Tập 2: Trên màn hình ra đa của đài kiểm soát không lưu (được coi như mặt phẳng tọa độ Oxy với đơn vị trên các trục tính theo ki-lô-mét), một máy bay trực thăng chuyển động thẳng đều từ thành phố A có tọa độ (400; 50) đến thành phố B có tọa độ (100; 450) (Hình 17) và thời gian bay quãng đường AB là 3 giờ. Người ta muốn biết vị trí (tọa độ) của máy bay trực thăng tại thời điểm sau khi xuất phát t giờ (0 ≤ t ≤ 3).

Trên màn hình ra đa của đài kiểm soát không lưu một máy bay trực thăng chuyển động thẳng đều

Làm thế nào để xác định được tọa độ của máy bay trực thăng tại thời điểm trên?

Trả lời

Sau bài học này, ta giải quyết được bài toán này như sau:

Gọi T(x; y) là vị trí máy bay trực thăng tại thời điểm sau khi xuất phát t giờ (0 ≤ t ≤ 3).

Ta có: AT=x400;y50AB=100400;45050=300;400.

Theo bài ra có thời gian bay quãng đường AB là 3 giờ, suy ra tọa độ máy bay trực thăng tại thời điểm sau khi xuất phát t giờ chính là tại vị trí T sao cho AT=t3AB.

Ta có: t3AB=t3300;400=t3.300;t3.400=100t;400t3

Khi đó: AT=t3ABx400;y50=100t;400t3

Trên màn hình ra đa của đài kiểm soát không lưu một máy bay trực thăng chuyển động thẳng đều

Vậy tọa độ của máy bay trực thăng tại thời điểm sau khi xuất phát t giờ là T400100t;50+400t3 với (0 ≤ t ≤ 3).

Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh diều hay, chi tiết khác:

Chủ đề 2: Xây dựng mô hình hàm số bậc nhất, bậc hai biểu diễn số liệu dạng bảng

Bài 1: Tọa độ của vectơ

Bài 2: Biểu thức tọa độ của các phép toán vectơ

Bài 3: Phương trình đường thẳng

Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Bài 5: Phương trình đường tròn

Câu hỏi cùng chủ đề

Xem tất cả