Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(2; 4); B(– 1; 1); C(– 8; 2). a) Tính số đo góc ABC (làm tròn kết quả đến hàng đơn vị theo đơn vị độ)

Bài 4 trang 72 Toán 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(2; 4); B(– 1; 1); C(– 8; 2).

a) Tính số đo góc ABC (làm tròn kết quả đến hàng đơn vị theo đơn vị độ).

b) Tính chu vi của tam giác ABC.

c) Tìm tọa độ điểm M trên đường thẳng BC sao cho diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM.

Trả lời

a) Ta có: BA=21;41, do đó BA=3;   3.

Suy ra BA=BA=32+32=32.

BC=81;  21,  do đó BC=7;  1.

Suy ra BC=BC=72+12=52.

Ta có: cosABC^=cosBA,BC=BA.BCBA.BC=3.7+3.132.52=35.

Do đó, ABC^=127°.

b) Ta có: AC=82;24, do đó AC=10;2.

Suy ra AC=AC=102+22=226.

Chu vi của tam giác ABC là:

BA + BC + AC = 32+52+22682+226.

c) Theo câu a ta có ABC^=127°, do đó tam giác ABC là tam giác tù.

Giải Toán 10 Bài 2 (Cánh diều): Biểu thức tọa độ của các phép toán vectơ (ảnh 1) 

Dựng đường cao AH của tam giác ABC.

Do đó diện tích tam giác ABC là SABC = 12AH . BC. (1)

Vì M thuộc đường thẳng BC nên AH cũng là đường cao của tam giác ABM.

Do đó diện tích tam giác ABM là SABM = 12 AH . BM. (2)

Vì diện tích của tam giác ABC bằng hai lần diện tích của tam giác ABM nên SABC = 2SABM. (3)

Từ (1), (2) và (3) suy ra 12AH . BC = 2 . 12AH . BM

 BC = 2BM hay BM = 12BC.

Mà M thuộc đường thẳng BC.

Do đó M là trung điểm của BC hoặc M là điểm đối xứng với trung điểm của BC qua B.

Trường hợp 1: M là trung điểm của BC nên tọa độ của M là

 xM=xB+xC2=1+82=92yM=yB+yC2=1+22=32

Vậy M92;  32.

Trường hợp 2: M là điểm đối xứng với trung điểm của BC qua B.

Suy ra điểm cần tìm là M', với B là trung điểm của MM' (M ở trường hợp 1).

Gọi tọa độ M'(xM'; yM').

Vì B là trung điểm của MM' nên xB=xM+xM'2yB=yM+yM'2

Suy ra xM'=2xBxM=2.192=52xM'=2xBxM=2.132=12.

Vậy M'52;  12.

Do đó có hai điểm M thỏa mãn yêu cầu bài toán.

Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh diều hay, chi tiết khác:

Chủ đề 2: Xây dựng mô hình hàm số bậc nhất, bậc hai biểu diễn số liệu dạng bảng

Bài 1: Tọa độ của vectơ

Bài 2: Biểu thức tọa độ của các phép toán vectơ

Bài 3: Phương trình đường thẳng

Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Bài 5: Phương trình đường tròn

Câu hỏi cùng chủ đề

Xem tất cả