Cho hình bình hành ABCD. Gọi M là trung điểm cạnh BC. Hãy biểu thị vecto AM theo hai vecto AB và AD

Bài 4.11 trang 58 Toán 10 Tập 1: Cho hình bình hành ABCD. Gọi M là trung điểm cạnh BC. Hãy biểu thị vecto AM theo hai vecto AB và AD

Trả lời

Cho hình bình hành ABCD. Gọi M là trung điểm cạnh BC. Hãy biểu thị (ảnh 1)

Gọi E là điểm đối xứng với A qua M.

Khi đó M là trung điểm của BC và AE.

Suy ra tứ giác ABEC là hình bình hành.

AB+AC=AE (quy tắc hình bình hành)

Mà AE=2AM (M là trung điểm của AE)

AB+AC=2AMAM=AB+AC2

Xét hình bình hành ABCD có: AC=AB+AD (quy tắc hình bình hành)

AM=AB+AB+AD2=AB+AB+AD2

AM=2AB+AD2=2AB2+AD2=AB+12AD

Vậy AM=AB+12AD.

Xem thêm lời giải bài tập SGK Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 7: Các khái niệm mở đầu

Bài 8: Tổng và hiệu của hai vectơ

Bài 9: Tích của một vecto với một số

Bài 10: Vectơ trong mặt phẳng tọa độ

Bài 11: Tích vô hướng của hai vecto

Bài tập cuối chương 4

Câu hỏi cùng chủ đề

Xem tất cả