Trắc nghiệm Toán 10 CTST Bài 4. Tích vô hướng của hai vectơ có đáp án

Dạng 1: Xác định góc giữa hai vectơ có đáp án

  • 680 lượt thi

  • 10 câu hỏi

  • 0 phút

Danh sách câu hỏi

Câu 1:

Cho tam giác ABC vuông cân tại A. Tính góc giữa hai vectơ CA BC.

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: B.

Cho tam giác ABC vuông cân tại A. Tính góc giữa hai vectơ CA và vecto BC. (ảnh 1)

Trên tia đối của CB lấy D sao cho CB = CD

Ta có: CD=BC

Khi đó: CA,  BC=CA,  CD=ACD^

Do tam giác ABC vuông cân tại A nên ACB^=45°.

Ta có: ACD^+ACB^=180° (hai góc kề bù)

ACD^=180°ACB^=180°45°=135°

Vậy CA,BC=135°.


Câu 2:

Cho tam giác ABC đều. Tính góc AB,AC.

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: D.

Xét tam giác ABC đều có: BAC^=60°

AB,AC=BAC^=60°.


Câu 3:

Cho tam giác ABC vuông tại A có: AB = 4, BC = 8. Tính CB,CA.

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: C.

Cho tam giác ABC vuông tại A có: AB = 4, BC = 8. Tính ( vecto CB, vecto CA) (ảnh 1)

Xét tam giác ABC vuông tại A có:

sinACB^=ABBC=48=12ACB^=30°

Vậy CB,CA=ACB^=30°.

Câu 4:

Cho tam giác ABC vuông tại B. Có AB = 3, AC = 6. Tính AB,AC.

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: B.

Cho tam giác ABC vuông tại B. Có AB = 3, AC = 6. Tính (vecto AB, vecto AC) (ảnh 1)

Xét tam giác ABC vuông tại A có:

cosBAC^=ABAC=36=12CAB^=60°

Vậy AB,AC=CAB^=60°.


Câu 5:

Cho tam giác ABC có AB = 5, AC = 6, BC = 4. Tính côsin của góc BA,BC.

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: A.

Ta có: BA,BC=ABC^ 

Xét tam giác ABC

Áp dụng định lí côsin ta có:

cosABC^=BA2+BC2AC22BA.BC=52+42622.5.4=18

Vậy cosBA,BC=cosABC^=18.


Câu 6:

Cho tam giác ABC có AB = 12, BC = 15, AC = 13. Tính cosAB,AC.

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: D.

Cho tam giác ABC có AB = 12, BC = 15, AC = 13. Tính cos (vecto AB, vecto AC) (ảnh 1)

Ta có: AB,AC=BAC^

Xét tam giác ABC

Áp dụng định lí côsin ta có:

cosBAC^=AB2+AC2BC22AB.AC=122+1321522.12.13=1139

Vậy cosAB,AC=1139.


Câu 7:

Cho hình vuông ABCD tâm O. Tính CA,BA.

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: D.

Cho hình vuông ABCD tâm O. Tính (vecto BA, vecto CA) (ảnh 1)

Xét hình vuông ABCD có: BA=CD

Do đó, CA,BA=CA,CD=ACD^

Xét tam giác ACD có:

DA = DC (do ABCD là hình vuông)

ADC^=90°

Do đó, tam giác ACD vuông cân tại D.

ACD^=45°

Vậy CA,BA=45°.


Câu 8:

Cho hình vuông ABCD tâm O. Tính OA,OC.

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: A.

Cho hình vuông ABCD tâm O. Tính (vecto OA, vecto OC) (ảnh 1)

Ta có: OA OC là hai vectơ cùng phương, ngược hướng.

Vậy OA,OC=180°.


Câu 9:

Cho hình chữ nhật ABCD. Tính góc AB,DC.

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: B.

Do ABCD là hình chữ nhật nên AB,DC cùng hướng.

Vậy AB,DC=0°.


Câu 10:

Cho hình thoi ABCD tâm O. Biết BD = 23, AC = 6. Tính BA,BC.

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: B.

Hình thoi ABCD có tâm O nên O là trung điểm của hai đường chéo AC và BD, hơn nữa hai đường chéo này vuông góc với nhau tại O.

Do đó, ta có:

BD = 23OB=3

AC = 6 AO = 3.

Xét tam giác AOB vuông tại O có: tanABO^=AOOB=33ABO^=60°.

Do ABCD là hình thoi nên BD là tia phân giác góc ABC^, do đó ta có:

ABC^=2ABO^=2.60°=120°.

Vậy BA,BC=ABC^=120°.

 


Bắt đầu thi ngay

Bài thi liên quan


Có thể bạn quan tâm


Các bài thi hot trong chương