Trong mặt phẳng Oxy, cho tam giác ABC có tọa độ ba đỉnh A(xA; yA), B(xB; yB), C(xC; yC). Gọi M(xM; yM) là trung điểm

Hoạt động khám phá 6 trang 42 Toán lớp 10 Tập 2: Trong mặt phẳng Oxy, cho tam giác ABC có tọa độ ba đỉnh A(xA; yA), B(xB; yB), C(xC; yC). Gọi M(xM; yM) là trung điểm của đoạn thẳng AB, G(xG; yG) là trọng tâm của tam giác ABC.

a) Biểu thị vectơ OM theo hai vectơ OA  OB.

b) Biểu thị vectơ OG theo hai vectơ OA, OB  OC.

c) Từ các kết quả trên, tìm tọa độ điểm M và G theo tọa độ của các điểm A, B, C.

 

Trả lời

a)

Hoạt động khám phá 6 trang 42 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

Vì M là trung điểm của AB nên ta có: OA+OB=2OM

 OM=12OA+12OB.

b) Ta có

OA+OB+OC=OG+GA+OG+GB+OG+GC=3OG+GA+GB+GC

 GA+GB+GC=0

Do đó OA+OB+OC=3OG

Hay OG=13OA+13OB+13OC

c) Tọa độ của OM là tọa độ của điểm M nên OM = (xM; yM);

Tọa độ của OA là tọa độ của điểm A nên OA = (xA; yA);

Tọa độ của OB là tọa độ của điểm B nên OB = (xB; yB);

 OM=12OA+12OB nên ta có xM=xA+xB2,yM=yA+yB2.

Vậy MxA+xB2;yA+yB2.

Tọa độ của OG là tọa độ của điểm G nên OG = (xG; yG);

Tọa độ của OA là tọa độ của điểm A nên OA = (xA; yA);

Tọa độ của OB là tọa độ của điểm B nên OB = (xB; yB);

Tọa độ của OC là tọa độ của điểm C nên OC = (xC; yC);

 OG=13OA+13OB+13OC nên ta có xG=xA+xB+xC3,yG=yA+yB+yC3.

Vậy GxA+xB+xC3;yA+yB+yC3.

Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Nhị thức Newton

Bài tập cuối chương 8

Bài 1: Toạ độ của vectơ

Bài 2: Đường thẳng trong mặt phẳng toạ độ

Bài 3: Đường tròn trong mặt phẳng toạ độ

Bài 4: Ba đường conic trong mặt phẳng tọa độ

Câu hỏi cùng chủ đề

Xem tất cả