Giải SGK Toán 10 (Chân trời sáng tạo) Bài 3: Đường tròn trong mặt phẳng toạ độ

1900.edu.vn xin giới thiệu giải bài tập Toán lớp 10 Bài 3: Đường tròn trong mặt phẳng toạ độ sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 Bài 3. Mời các bạn đón xem:

Giải Toán 10 Bài 3: Đường tròn trong mặt phẳng toạ độ

Hoạt động khởi động trang 59 Toán lớp 10 Tập 2: Một nông trại tưới nước theo phương pháp vòi phun xoay vòng tại trung tâm. Cho biết tâm một vòi phun được đặt tại tọa độ (30; 40) và vòi có thể phun xa tối đa 50 m. Làm thế nào để viết phương trình biểu diến tập hợp các điểm xa nhất mà vòi này có thể phun tới.

Hoạt động khởi động trang 59 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

Lời giải:

Tập hợp các điểm xa nhất mà vòi này có thể phun tới là đường tròn có tâm là tâm một vòi phun.

Sau bài học này ta có thể viết được phương trình biểu diến tập hợp các điểm xa nhất mà vòi này có thể phun tới là phương trình đường tròn có tâm là điểm có tọa độ (30; 40) và bán kính là 50 có dạng:

(x – 30)2 + (y – 40)2 = 502.

1. Phương trình đường tròn

Hoạt động khám phá 1 trang 59 Toán lớp 10 Tập 2: Hãy nhắc lại công thức tính khoảng cách giữa hai điểm I(a; b) và M(x; y) nằm trong mặt phẳng Oxy.

Lời giải:

Ta có: IM = (x – a; y – b)

Khi đó khoảng cách giữa hai điểm I và M cũng chính là độ dài đoạn thẳng IM và được tính bằng công thức sau:

IM = xa2+yb2.

Thực hành 1 trang 60 Toán lớp 10 Tập 2: Viết phương trình đường tròn (C) trong các trường hợp sau:

a) (C) có tâm O(0; 0), bán kính R = 4;

b) (C) có tâm I(2; -2), bán kính R = 8;

c) (C) đi qua ba điểm A(1; 4), B(0; 1), C(4; 3).

Lời giải:

a) Phương trình đường tròn (C) có tâm O(0; 0), bán kính R = 4 là:

(x – 0)2 + (y – 0)2 = 42

⇔ x2 + y2 = 16.

Vậy phương trình đường tròn (C) cần tìm là x2 + y2 = 16.

b) Phương trình đường tròn (C) có tâm I(2; -2), bán kính R = 8 là:

(x – 2)2 + (y + 2)2 = 82

Vậy phương trình đường tròn (C) cần tìm là (x – 2)2 + (y + 2)2 = 82.

c) Gọi I(a; b) là tâm của đường tròn (C), khi đó ta có:

AIa1;b4 ⇒ AI = a12+b42;

BIa;b1 ⇒ BI = a2+b12;

CIa4;b3 ⇒ CI = a42+b32.

Vì đường tròn (C) đi qua ba điểm A, B, C nên ta có:

AI = BI = CI = R

Khi đó ta có hệ phương trình sau:

Thực hành 1 trang 60 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

Suy ra tâm I(2; 2)

Bán kính của đường tròn (C) là: R = a2+b12= 22+212=5.

Phương trình đường tròn (C) là:

(x – 2)2 + (y – 2)2 = 52

⇔ (x – 2)2 + (y – 2)2 = 5.

Vậy phương trình đường tròn (C) là (x – 2)2 + (y – 2)2 = 5.

Thực hành 2 trang 61 Toán lớp 10 Tập 2: Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm tọa độ tâm và bán kính của đường tròn đó.

a) x2 + y2 – 2x – 4y – 20 = 0;

b) (x + 5)2 + (y + 1)2 = 121;

c) x2 + y2 – 4x – 8y + 5 = 0;

d) 2x2 + 2y2 + 6x + 8y – 2 = 0.

Lời giải:

a) Phương trình đã cho có dạng x2 + y2 – 2ax – 2by + c = 0 với a = 1, b = 2 và c = -20.

Ta có: a2 + b2 – c = 12 + 22 – (-20) = 25 > 0.

Vậy đây là phương trình đường tròn có tâm là I(1; 2) và bán kính R = 25 = 5.

b) Phương trình đã cho có dạng tổng quát của phương trình đường tròn.

Vậy đây là phương trình đường tròn có tâm là I(-5; -1) và bán kính R = 121 = 11.

c) Phương trình đã cho có dạng x2 + y2 – 2ax – 2by + c = 0 với a = 2, b = 4 và c = 5.

Ta có: a2 + b2 – c = 22 + 42 – 5 = 15 > 0.

Vậy đây là phương trình đường tròn có tâm là I(2; 4) và bán kính R = 15.

d) 2x2 + 2y2 + 6x + 8y – 2 = 0

⇔ x2 + y2 + 3x + 4y – 1 = 0 (chia cả hai vế cho 2)

Phương trình đã cho có dạng x2 + y2 – 2ax – 2by + c = 0 với a = 32, b = -2 và c = -1.

Ta có: a2 + b2 – c = 322+221=294 > 0.

Vậy đây là phương trình đường tròn có tâm là I32;2 và bán kính R = 294.

Vận dụng 1 trang 61 Toán lớp 10 Tập 2: Theo dữ kiện đã cho trong hoạt động của bài học, viết phương trình đường tròn biểu diễn tập hợp các điểm xa nhất mà vòi nước có thể phun tới.

Lời giải:

Tập hợp các điểm xa nhất mà vòi này có thể phun tới là đường tròn có tâm là tâm một vòi phun.

Phương trình biểu diến tập hợp các điểm xa nhất mà vòi này có thể phun tới là phương trình đường tròn có tâm là điểm có tọa độ (30; 40) và bán kính là 50 có dạng:

(x – 30)2 + (y – 40)2 = 502.

Vận dụng 2 trang 61 Toán lớp 10 Tập 2: Một sân khấu đã được thiết lập một hệ trục tọa độ để đạo diễn có thể sắp đặt ánh sáng và xác định vị trí của các diễn viên. Chi biết một đèn chiếu đang rọi trên sân khấu một vùng sáng bên trong đường tròn (C) có phương trình (x – 13)2 + (y – 4)2 = 16.

a) Tìm tọa độ tâm và bán kính của đường tròn (C).

b) Cho biết tọa độ trên sân khấu của ba diễn viên A, B, C như sau: A(11; 4), B(8; 5), C(15; 5). Diễn viên nào đang được đèn chiếu sáng?

Lời giải:

a) Xét phương trình đường tròn (C): (x – 13)2 + (y – 4)2 = 16.

Đường tròn này có tâm I(13; 4) và bán kính R = 16 = 4.

Vậy tâm của đường tròn (C) là I(13; 4) và bán kính R = 4.

b) Ta có: IA = (-2; 0) ⇒ IA = 22+02 = 2;

IB = (-5; 1) ⇒ IB = 52+12=26;

IC = (2; 1) ⇒ IA = 22+12=5;

Biết một đèn chiếu đang rọi trên sân khấu một vùng sáng bên trong đường tròn (C). Diễn viên được chiếu sáng nghĩa là phải nằm trên đường tròn hoặc trong đường tròn (C). Hay chính là khoảng cách từ các điểm A, B, C đến tâm I của đường tròn (C) phải nhỏ hơn hoặc bằng bán kính R của (C).

Vì 2 < 4 nên IA < R hay A nằm trong đường tròn (C). Do đó diễn viễn A được đèn chiếu sáng.

 26>16=4 nên IB > R hay B nằm ngoài đường tròn (C). Do đó diễn viên B không được đèn chiếu sáng.

 5<16=4 nên IC < R hay C nằm trong đường tròn (C). Do đó diễn viên C được đèn chiếu sáng.

Vậy diễn viên A và C được đèn chiếu sáng, diễn viên B không được đèn chiếu sáng.

2. Phương trình tiếp tuyến của đường tròn

Hoạt động khám phá 2 trang 61 Toán lớp 10 Tập 2: Cho điểm M(x0; y0) nằm trên đường tròn (C) tâm I(a; b) và cho điểm M(x; y) tùy ý trong mặt phẳng Oxy. Gọi ∆ là tiếp tuyến của (C) tại M0.

Hoạt động khám phá 2 trang 61 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

a) Viết tọa độ của hai vectơ M0M  M0I.

b) Viết biểu thức tọa độ của tích vô hướng của hai vectơ M0M  M0I.

c) Hệ thức M0M.M0I=0 cho ta phương trình của đường thẳng nào?

Lời giải:

a) Biểu thức tọa độ của hai vectơ M0M  M0I là:

M0M = (x – x0; y – y0);

M0I = (a – x0; b – y0).

b) Biểu thức tọa độ tích vô hướng của hai vectơ M0M  M0I là:

M0M.M0I = (x – x0)(a – x0) + (y – y0).(b – y0).

c) Ta có hệ thức M0M.M0I=0

⇔ (x – x0)(a – x0) + (y – y0).(b – y0) = 0 (*)

Vì ∆ là tiếp tuyến của đường tròn (C) nên ∆ ⊥ IM0. Do đó phương trình đường thẳng ∆ nhận vectơ M0M làm VTPT và đi qua điểm M0(x0; y0) là:

(a – x0)(x – x0) + (b – y0)(y – y0) = 0

Và đây cũng chính là phương trình (*).

Vậy hệ thức M0M.M0I=0 là phương trình của đường thẳng ∆ là tiếp tuyến của đường tròn (C).

Thực hành 3 trang 62 Toán lớp 10 Tập 2: Viết phương trình tiếp tuyến của đường tròn (C): x2 + y2 – 2x – 4y – 20 = 0 tại điểm A(4; 6).

Lời giải:

Xét phương trình đường tròn (C): x2 + y2 – 2x – 4y – 20 = 0

⇔ x2 – 2x + 1 + y2 – 4y + 4 = 25

⇔ (x – 1)2 + (y – 2)2 = 52

Suy ra phương trình đường tròn (C) có tâm I(1; 2) và bán kính R = 5.

Phương trình tiếp tuyến của đường tròn (C) tại điểm A(4; 6) là:

(1 – 4)(x – 4) + (2 – 6)(y – 6) = 0

⇔ - 3(x – 4) – 4(y – 6) = 0

⇔ 3x + 4y – 36 = 0

Vậy phương trình tiếp tuyến của đường tròn (C) tại điểm A(4; 5) là: 3x + 4y – 36 = 0.

Vận dụng 3 trang 62 Toán lớp 10 Tập 2: Một vận động viên ném đĩa đã vung đĩa theo một đường tròn (C) có phương trình:

(x – 1)2 + (y – 1)2 = 169144

Khi người đó vung đĩa đến vị trí điểm M1712;2 thì buông đĩa (Hình 4). Viết phương trình tiếp tuyến của đường tròn (C) tại điểm M.

Vận dụng 3 trang 62 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

Lời giải:

Phương trình đường tròn (C) có tâm I(1; 1).

Khi đó IM512;1

Phương trình tiếp tuyến của đường tròn (C) tại điểm M nhận IM512;1 làm VTPT là:

512x1712+y2=0

 5x+12y37312=0

Vậy phương trình tiếp tuyến của đường tròn (C) tại điểm M là 5x+12y37312=0.

Bài tập

Bài 1 trang 62 Toán lớp 10 Tập 2: Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm tọa độ tâm và bán kính của đường tròn đó.

a) x2 + y2 – 6x – 8y + 21 = 0;

b) x2 + y2 – 2x + 4y + 2 = 0;

c) x2 + y2 – 3x + 2y + 7 = 0;

d) 2x2 + 2y2 + x + y – 1 = 0.

Lời giải:

a) Phương trình đã cho có dạng x2 + y2 – 2ax – 2by + c = 0 với a = 3, b = 4, c = 21.

Ta có: a2 + b2 – c = 32 + 42 – 21 = 4 > 0.

Vậy phương trình đã cho là phương trình đường tròn có tâm I(3; 4) và bán kính R = 4 = 2.

b) Phương trình đã cho có dạng x2 + y2 – 2ax – 2by + c = 0 với a = 1, b = - 2, c = 2.

Ta có: a2 + b2 – c = 12 + (-2)2 – 2 = 3 > 0.

Vậy phương trình đã cho là phương trình đường tròn có tâm I(1; -2) và bán kính R = 3.

c) Phương trình đã cho có dạng x2 + y2 – 2ax – 2by + c = 0 với a = 32, b = -1, c = 7.

Ta có: a2 + b2 – c = 322 + (-1)2 – 7 = 154 < 0.

Vậy phương trình đã cho không là phương trình đường tròn.

d) 2x2 + 2y2 + x + y – 1 = 0

⇔ x2 + y2 + 12x + 12y – 12 = 0

Phương trình đã cho có dạng x2 + y2 – 2ax – 2by + c = 0 với a = 14, b = 14, c = 12.

Ta có: a2 + b2 – c = 142+14212=1016=58 > 0.

Vậy phương trình đã cho là phương trình đường tròn có tâm I14;14 và bán kính R=58.

Bài 2 trang 62 Toán lớp 10 Tập 2: Lập phương trình đường tròn (C) trong các trường hợp sau:

a) (C) có tâm I(1; 5) có bán kính r = 4;

b) (C) có đường kính MN với M(3; -1) và N(9; 3);

c) (C) có tâm I(2; 1) và tiếp xúc với đường thẳng 5x – 12y + 11 = 0;

d) (C) có tâm A(1; -2) và đi qua điểm B(4; -5).

Lời giải:

a) Phương trình đường tròn (C) có tâm I(1; 5) và bán kính r = 4 là:

(x – 1)2 + (y – 5)2 = 42

⇔ (x – 1)2 + (y – 5)2 = 16.

Vậy phương trình đường tròn (C) có tâm I(1; 5) và bán kính r = 4 là (x – 1)2 + (y – 5)2 = 16.

b) Tâm I của đường tròn (C) là trung điểm của đoạn thẳng MN.

Khi đó tọa độ tâm I của đường tròn (C) là: I = 9+32;1+32=(6; 1).

Ta có: MN = (6; 4) ⇒ MN = 62+42=52

Vì MN là đường kính của đường tròn (C) nên bán kính của (C) bằng MN2=522.

Phương trình đường tròn (C) có tâm I(6; 1) và bán kính R = 522 là:

(x – 6)2 + (y – 1)2 = 5222

⇔ (x – 6)2 + (y – 1)2 = 13.

Vậy phương trình đường tròn (C) cần tìm là (x – 6)2 + (y – 1)2 = 13.

c) Bán kính của đường tròn (C) là khoảng cách từ điểm I đến đường thẳng 5x – 12y + 11 = 0 là: Bài 2 trang 62 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

Phương trình đường tròn (C) có tâm I(2; 1) và bán kính là R = 913 là:

(x – 2)2 + (y – 1)2 = 9132

⇔ (x – 2)2 + (y – 1)2 = 81169

Vậy phương trình đường tròn (C) là (x – 2)2 + (y – 1)2 = 81169.

d) Bán kính của đường tròn (C) chính là độ dài đoạn thẳng AB.

Ta có AB = (3; -3) ⇒ AB = 32+32=32.

Khi đó R = AB = 32

Phương trình đường tròn tâm A(1; -2) bán kính R = 32 là:

(x – 1)2 + (y + 2)2 = 322

⇔ (x – 1)2 + (y + 2)2 = 18.

Vậy phương trình đường tròn cần tìm là (C): (x – 1)2 + (y + 2)2 = 18.

Bài 3 trang 62 Toán lớp 10 Tập 2: Lập phương trình đường tròn ngoại tiếp tam giác có tọa độ các đỉnh là:

a) M(2; 5), N(1; 2), P(5; 4);

b) A(0; 6), B(7; 7), C(8; 0).

Lời giải:

a) Gọi (C) là đường tròn ngoại tiếp tam giác MNP, có tâm là I(a; b) và bán kính R.

Khi đó:

MI = (a – 2; b – 5) ⇒ MI = a22+b52

NI = (a – 1; b – 2) ⇒ NI = a12+b22

PI = (a – 5; b – 4) ⇒ PI = a52+b42

Ta có: MI = NI = PI = R nên ta có hệ phương trình:

Bài 3 trang 62 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

⇒ I(3; 3) và MI = 322+352=5.

Do đó phương trình đường tròn ngoại tiếp tam giác MNP có tâm I(3; 3) và bán kính R = 5 là:

(x – 3)2 + (y – 3)2 = 52

⇔ (x – 3)2 + (y – 3)2 = 5.

Vậy phương trình đường tròn ngoại tiếp tam giác MNP là: (x – 3)2 + (y – 3)2 = 5.

b) Gọi (C) là đường tròn ngoại tiếp tam giác ABC, có tâm là I(a; b) và bán kính R.

Khi đó:

AI = (a ; b – 6) ⇒ AI = a2+b62

BI = (a – 7; b – 7) ⇒ BI = a72+b72

CI = (a – 8; b) ⇒ CI = a82+b2

Ta có: AI = BI = CI = R nên ta có hệ phương trình:

Bài 3 trang 62 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

⇒ I(4; 3) và AI = 42+362=25=5.

Do đó phương trình đường tròn ngoại tiếp tam giác ABC có tâm I(4; 3) và bán kính R = 5 là:

(x – 4)2 + (y – 3)2 = 52

⇔ (x – 4)2 + (y – 3)2 = 25.

Vậy phương trình đường tròn ngoại tiếp tam giác ABC là: (x – 4)2 + (y – 3)2 = 25.

Bài 4 trang 62 Toán lớp 10 Tập 2: Lập phương trình đường tròn tiếp xúc với hai trục tọa độ Ox, Oy và đi qua điểm A(4; 2).

Lời giải:

Gọi đường tròn cần tìm là (C) có tâm là I(a; b) và bán kính R.

Vì đường tròn (C) tiếp xúc với hai trục tọa độ Ox, Oy và đi qua điểm A(4; 2) nên a = b và R = a.

Khi đó phương trình đường tròn (C) là:

(x – a)2 + (y – a)2 = a2

Ta lại có đường tròn (C) đi qua điểm A(4; 2) nên thay tọa độ điểm A vào phương trình đường tròn (C) ta được:

(4 – a)2 + (2 – a)2 = a2

⇔ 16 – 8a + a2 + 4 – 4a + a2 = a2

⇔ a2 – 12a + 20 = 0

⇔ a = 10 hoặc a = 2

Với a = 10, phương trình đường tròn cần tìm là:

(x – 10)2 + (y – 10)2 = 102

⇔ (x – 10)2 + (y – 10)2 = 100

Với a = 2, phương trình đường tròn cần tìm là:

(x – 2)2 + (y – 2)2 = 22

⇔ (x – 2)2 + (y – 2)2 = 4

Vậy đường tròn (C) có hai phương trình thỏa mãn điều kiện đầu bài là:

(x – 10)2 + (y – 10)2 = 100 và (x – 2)2 + (y – 2)2 = 4.

Bài 5 trang 63 Toán lớp 10 Tập 2: Cho đường tròn (C) có phương trình x2 + y2 – 2x – 4y – 20 = 0.

a) Chứng tỏ rằng điểm M(4; 6) thuộc đường tròn (C).

b) Viết phương trình tiếp tuyến của (C) tại điểm M(4; 6).

c) Viết phương trình tiếp tuyến của (C) song song với đường thẳng 4x + 3y + 2022 = 0.

Lời giải:

a) Thay tọa độ điểm M(4; 6) vào phương trình đường tròn (C): x2 + y2 – 2x – 4y – 20 = 0, ta được:

42 + 62 – 2.4 – 4.6 – 20 = 0

⇔ 24 + 36 – 8 – 24 – 20 = 0

⇔ 0 = 0 (luôn đúng)

Vậy điểm M(4; 6) thuộc đường tròn (C).

b) Xét phương trình đường tròn (C):

x2 – 2x + 1 + y2 – 4y + 4 – 25 = 0

⇔ (x – 1)2 + (y – 2)2 = 52

Do đó đường tròn (C) có tâm I(1; 2) và R = 5.

 IM3;4

Do đó phương trình tiếp tuyến của đường tròn (C) nhận IM3;4 làm VTPT và đi qua điểm M(4; 6) là:

3(x – 4) + 4(y – 6) = 0

⇔ 3x + 4y – 36 = 0

Vậy phương trình tiếp tuyến của đường tròn (C) là: 3x + 4y – 36 = 0.

c) Đường thẳng 4x + 3y + 2022 = 0 có VTPT là n(4; 3).

Vì tiếp tuyến của (C) song song với đường thẳng 4x + 3y + 2022 = 0 nên nhận n(4; 3) làm VTPT. Khi đó phương trình tiếp tuyến ∆ của (C) có dạng: 4x + 3y + c = 0.

Khoảng cách từ I đến đường thẳng ∆ là: d(I; ∆) = Bài 5 trang 63 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

Do ∆ là tiếp tuyến của (C) nên khoảng cách từ tâm I đến ∆ bằng đúng bán kính của đường tròn nên ta có phương trình:

Bài 5 trang 63 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

Vậy có hai phương trình tiếp tuyến của đường tròn (C) song song với đường thẳng 4x + 3y + 2 022 = 0 là: 4x + 3y + 15 = 0 và 4x + 3y – 35 = 0.

Bài 6 trang 63 Toán lớp 10 Tập 2: Một cái cổng hình bán nguyệt rộng 8,4m, cao 4,2 m như Hình 5. Mặt đường dưới cổng được chia thành hai làn cho xe ra vào.

a) Viết phương trình mô phỏng cái cổng.

b) Một chiếc xe tải rộng 2,2m và cao 2,6m đi đúng làn đường quy định có thể đi qua cổng mà không làm hư hỏng cổng hay không?

Bài 6 trang 63 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

Lời giải:

a) Đặt hệ trục tọa độ như hình vẽ:

Bài 6 trang 63 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

Cổng hình bán nguyệt nghĩa là một nửa đường tròn:

Tâm của đường tròn là gốc O(0; 0).

Bán kính của đường tròn là R = 4,2.

Khi đó phương trình đường tròn (phương trình mô phỏng cổng với y ≥ 0) là:

(x – 0)2 + (y – 0)2 = 4,22

⇔ x2 + y2 = 17,76

Vậy phương trình mô phỏng cổng là x2 + y2 = 17,76 (với y ≥ 0).

b) Gọi điểm cao nhất của chiếc xe tải là A, tọa độ điểm A(2,2; 2,6). Để biết được xe tải đi đúng làn đường quy định mà có thể đi qua cổng mà không làm hư hỏng cổng hay không nghĩa là điểm A phải nằm trong đường tròn hay nói cách khác là khoảng cách từ A đến tâm của đường tròn nhỏ hơn bán kính.

Ta có: OA = (2,2; 2,6) ⇒ Bài 6 trang 63 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

Vì 3,41 < 4,2 nên điểm A nằm trong đường tròn đã cho.

Vậy một chiếc xe tải rộng 2,2m và cao 2,6m đi đúng làn đường quy định có thể đi qua cổng mà không làm hư hỏng cổng.

Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Toạ độ của vectơ

Bài 2: Đường thẳng trong mặt phẳng toạ độ

Bài 4: Ba đường conic trong mặt phẳng tọa độ

Bài tập cuối chương 9

Bài 1: Không gian mẫu và biến cố

Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!