Giả sử un là số hạng thứ n của dãy số (un) và un = (1 + căn 5)^n - (1 - căn 5)^n / 2^n * căn 5

Bài 29 trang 70 SBT Toán 11 Tập 2Giả sử un là số hạng thứ n của dãy số (un) và un=1+5n15n2n5.

a) Chứng tỏ rằng u1 = 1, u2 = 1 và un + 2 = un + 1 + un với mọi n  ℕ*. Từ đó suy ra (un) là dãy số Fibonacci.

b) Viết 11 số hạng đầu tiên của dãy Fibonacci và 10 tỉ số un+1un đầu tiên.

Tính limn+un+1un.

Trả lời

a) Ta có an + 2 – bn + 2 = an + 1.a − bn + 1.b

= an + 1.a + an + 1.b − bn + 1.b − bn + 1.a − an + 1.b + bn + 1.a

= an + 1.(a + b) − bn + 1.(a + b) – ab(an − bn)

= (an + 1 − bn + 1).(a + b) – ab(an − bn) (*)

Có u1=1+51151215=2525=1.

u2=1+52152225=4545=1.

Áp dụng (*), ta có:

un+2=1+5n+215n+22n+25

Giả sử un là số hạng thứ n của dãy số (un)

=1+5n+115n+12n+15+1+5n15n2n5 = un+1 + un.

Vậy un + 2 = un+1 + un. Do đó (un) là dãy Fibonacci.

b) Ta có bảng sau

n

1

2

3

4

5

6

7

8

9

10

11

un

1

1

2

3

5

8

13

21

34

55

89

un+1un

1

2

32 53 85 138 2113 3421 5534 8955  

Ta có limn+un+1un=limn+1+5n+115n+12n+151+5n15n2n5

Giả sử un là số hạng thứ n của dãy số (un)

Xem thêm các bài giải SBT Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả