Cho tam giác ABC có AB = 6, AC = 8 và góc A = 60độ. a) Tính diện tích tam giác ABC

Bài 6 trang 73 Toán lớp 10 Tập 1Cho tam giác ABC có AB = 6, AC = 8 và A^=60o.

a) Tính diện tích tam giác ABC.

b) Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Tính diện tích tam giác IBC.

Trả lời

Giải Toán 10 Bài 2: Định lí côsin và định lí sin - Chân trời sáng tạo (ảnh 1)

a) SABC=12AB.AC.sinA=126.8.sin600=123

b)
Áp dụng định lí côsin ta có:

BC2=AB2+AC22AB.AC.cosA=82+622.8.6.cos600=52BC=52

Ta có: R=IB=IC=BC2sinA=522sin600=2393(áp dụng định lí sin)

Mặt khác, ta có: CAB^ và CIB^ cùng chắn cung BC

Mà CAB^ là góc nội tiếp và  CIB^ góc ở tâm

Nên CIB^=2CAB^=2.600=1200

Vậy SIBC=12.IB.IC.sinCIB^=12.23932.sin1200=1333

Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chương 3

Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ

Bài 2: Định lí côsin và định lí sin

Bài 3: Giải tam giác và ứng dụng thực tế

Bài tập cuối chương 4

Bài 1: Khái niệm vectơ

 

Câu hỏi cùng chủ đề

Xem tất cả