Cho hình vuông ABCD có hai đường chéo cắt nhau tại O. Hãy chỉ ra tập S gồm tất cả các vectơ khác

Bài 4.4 trang 50 Toán 10 Tập 1: Cho hình vuông ABCD có hai đường chéo cắt nhau tại O. Hãy chỉ ra tập S gồm tất cả các vectơ khác , có điểm đầu và điểm cuối thuộc tập hợp {A; B; C; D; O}. Hãy chia tập S thành các nhóm sao cho hai vectơ thuộc cùng một nhóm khi và chỉ khi chúng bằng nhau.

Trả lời

Cho hình vuông ABCD có hai đường chéo cắt nhau tại O. Hãy chỉ ra tập S gồm tất cả (ảnh 1)

Các vectơ khác 0, có điểm đầu và điểm cuối thuộc tập hợp {A; B; C; D; O} là: 

AB,AC,AD,AO,BA,BC,BD,BO,CA,CB,CD,CO,DA,DB,DC,DO,OA,OC,OB,OD.

Khi đó: S = {AB;AC; AD;AO;BA;BC;BD;BO;CA;CB;CD;CO;DA;DB;DC;DO;OA;OC;OB;OD}.

Hai vectơ bằng nhau trong tập hợp S là:

AB=DC;BA=CD;AD=BC;DA=CB;OA=CO;OB=DO; OC=AO;OD=BO. 

Khi đó tập S được chia thành các nhóm là:

Nhóm 1: AB;DC;

Nhóm 2: AD;BC;

Nhóm 3: BA;CD;

Nhóm 4: DA;CB;

Nhóm 5: OA;CO; 

Nhóm 6: OB;DO;

Nhóm 7: OC;AO; 

Nhóm 8: OD;BO.

Xem thêm lời giải bài tập SGK Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 6: Hệ thức lượng trong tam giác

Bài tập cuối chương 3

Bài 7: Các khái niệm mở đầu

Bài 8: Tổng và hiệu của hai vectơ

Bài 9: Tích của một vecto với một số

Bài 10: Vectơ trong mặt phẳng tọa độ

Câu hỏi cùng chủ đề

Xem tất cả