Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 14)

  • 863 lượt thi

  • 10 câu hỏi

  • 0 phút

Danh sách câu hỏi

Câu 1:

Giải phương trình lượng giác sau: \[{\sin ^2}\left( {\frac{x}{2}} \right) - 2{\cos ^2}\left( {\frac{x}{4}} \right) + \frac{3}{4} = 0\].
Xem đáp án

Phương pháp:

Sử dụng công thức hạ bậc \[{\sin ^2}\alpha = \frac{{1 - \cos 2\alpha }}{2};{\rm{ }}{\cos ^2}\alpha = \frac{{1 + \cos 2\alpha }}{2}\]

Cách giải:

\[{\sin ^2}\left( {\frac{x}{2}} \right) - 2{\cos ^2}\left( {\frac{x}{4}} \right) + \frac{3}{4} = 0\]

\[ \Leftrightarrow \frac{{1 - \cos x}}{2} - 2.\frac{{1 + \cos \frac{x}{2}}}{2} + \frac{3}{4} = 0 \Leftrightarrow 2 - 2\cos x - 4 - 4\cos \frac{x}{2} + 3 = 0\]

\[ \Leftrightarrow \left( {2\cos x - 1} \right) + 4\cos \frac{x}{2} = 0 \Leftrightarrow {\cos ^2}\frac{x}{2} + 4\cos \frac{x}{2} = 0 \Leftrightarrow \cos \frac{x}{2}\left( {\cos \frac{x}{2} + 4} \right) = 0\]

\[ \Leftrightarrow \left[ \begin{array}{l}\cos \frac{x}{2} = 0\\\cos \frac{x}{2} + 4 = 0\left( {VN} \right)\end{array} \right. \Leftrightarrow \frac{x}{2} = \frac{\pi }{2} + k\pi \Leftrightarrow x = \pi + k2\pi \]

Vậy phương trình có nghiệm \[x = \pi + k2\pi ,{\rm{ }}k \in \mathbb{Z}\].


Câu 2:

Tìm số hạng không chứa \[x\] trong khai triển của biểu thức: \[{\left( {2{x^3} - \frac{2}{{{x^2}}}} \right)^5}\].
Xem đáp án

Phương pháp:

Sử dụng công thức tính số hạng tổng quát \[{T_{k + 1}} = C_n^k{a^{n - k}}{b^k}\].

Cách giải:

Số hạng tổng quát: \[{T_{k + 1}} = C_5^k.{\left( {3{x^3}} \right)^{5 - k}}.{\left( { - \frac{2}{{{x^2}}}} \right)^k} = C_5^k{.3^{5 - k}}.{x^{15 - 3k}}.\frac{{{{\left( { - 2} \right)}^k}}}{{{x^{2k}}}} = C_5^k{.3^{5 - k}}.{\left( { - 2} \right)^k}.{x^{15 - 5k}}\]

Số hạng không chứa \[x\] ứng với \[15 - 5k = 0 \Leftrightarrow k = 3\]

Vậy số không chứa \[x\] là: \[C_5^3{.3^{5 - 3}}.{\left( { - 2} \right)^3} = - 720\].


Câu 3:

Cho cấp số cộng \[\left( {{u_n}} \right)\] là một dãy số tăng thỏa mãn điều kiện \[\left\{ \begin{array}{l}{u_{31}} + {u_{34}} = 11\\u_{31}^2 + u_{34}^2 = 101\end{array} \right.\].

 Tìm số hạng đầu tiên \[{u_1}\], công sai \[d\] và số hạng tổng quát của cấp số cộng đó.

Xem đáp án

Phương pháp:

Sử dụng công thức: \[{u_n} = {u_1} + \left( {n - 1} \right)d\].

Cách giải:

Ta có: \[\left\{ \begin{array}{l}{u_{31}} + {u_{34}} = 11\\u_{31}^2 + u_{34}^2 = 101\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_{34}} = 11 - {u_{31}}\\u_{31}^2 + {\left( {11 - {u_{31}}} \right)^2} = 101\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_{34}} = 11 - {u_{31}}\\2u_{31}^2 - 22{u_{31}} + 121 = 101\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}{u_{34}} = 11 - {u_{31}}\\2u_{31}^2 - 22{u_{31}} + 20 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_{34}} = 11 - {u_{31}}\\{u_{31}} = 2,{u_{31}} = 10\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{u_{31}} = 2,{u_{34}} = 9\\{u_{31}} = 10,{u_{34}} = 1\end{array} \right.\]

Mà dãy \[\left( {{u_n}} \right)\] tăng nên \[{u_{34}} > {u_{31}}\], do đó \[{u_{31}} = 2,{\rm{ }}{u_{34}} = 9\]

\[ \Rightarrow \left\{ \begin{array}{l}{u_1} + 30d = 2\\{u_1} + 33d = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}d = \frac{7}{3}\\{u_1} = - 68\end{array} \right.\]

Số hạng tổng quát \[{u_n} = - 68 + \frac{7}{3}\left( {n - 1} \right)\].

Vậy \[{u_1} = - 68,{\rm{ }}d = \frac{7}{3},{\rm{ }}{u_n} = - 68 + \frac{7}{3}\left( {n - 1} \right)\].


Câu 4:

Một hộp có chứa 4 quả cầu màu đỏ, 5 quả cầu màu xanh và 7 quả cầu màu vàng. Lấy ngẫu nhiên cùng lúc ra 4 quả cầu từ hộp đó. Tính xác suất sao cho 4 quả cầu được lấy ra có đúng 1 quả cầu màu đỏ và không quá 2 quả cầu màu vàng.
Xem đáp án

Phương pháp:

- Tính số phần tử không gian mẫu \[n\left( \Omega \right)\]

- Tính số khả năng có lợi cho biến cố \[A\] đã cho.

- Tính xác suất \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\].

Cách giải:

Chọn 4 trong 16 quả cầu, \[n\left( \Omega \right) = C_{16}^4 = 1820\].

Gọi \[A\] là biến cố: “Có đúng 1 quả cầu đỏ và không quá 2 quả cầu vàng”

TH1: Chọn được 1 quả cầu đỏ, 2 quả cầu vàng, 1 quả cầu xanh có \[C_4^1.C_7^2.C_5^1 = 420\] cách.

TH2: Chọn được 1 quả cầu đỏ, 1 quả cầu vàng, 2 quả cầu xanh có \[C_4^1.C_7^1.C_5^2 = 280\] cách.

TH3: Chọn được 1 quả cầu đỏ, 0 quả cầu vàng, 3 quả cầu xanh có \[C_4^1.C_7^0.C_5^3 = 40\] cách.

Do đó \[n\left( A \right) = 420 + 280 + 40 = 740\].

Xác suất \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{740}}{{1820}} = \frac{{37}}{{91}}\].


Câu 5:

Cho một cấp số cộng \[\left( {{u_n}} \right)\] có số hạng đầu tiên \[{u_1} = 1\] và tổng 100 số hạng đầu tiên bằng 24850. Tính \[S = \frac{1}{{{u_1}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + \frac{1}{{{u_3}{u_4}}} + ... + \frac{1}{{{u_{49}}{u_{50}}}}\].
Xem đáp án

Phương pháp:

- Tìm CSC đã cho bằng cách sử dụng công thức \[{S_n} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\]

- Thay vào tổng đã cho tính toán.

Cách giải:

Ta có: \[24850 = {S_{100}} = \frac{{100\left( {2.1 + 99d} \right)}}{2} \Leftrightarrow d = 5\]

Khi đó \[{u_1} = 1,{\rm{ }}{u_2} = 6,{\rm{ }}{u_3} = 11,{\rm{ }}{u_4} = 16,...,{u_{49}} = {u_1} + 48d = 241,{\rm{ }}{u_{50}} = {u_1} + 49d = 246\]

\[ \Rightarrow S = \frac{1}{{{u_1}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + ... + \frac{1}{{{u_{49}}{u_{50}}}} = \frac{1}{{1.6}} + \frac{1}{{6.11}} + \frac{1}{{11.16}} + ... + \frac{1}{{241.246}}\] \[ = \frac{1}{5}\left( {\frac{1}{1} - \frac{1}{6}} \right) + \frac{1}{5}\left( {\frac{1}{6} - \frac{1}{{11}}} \right) + ... + \frac{1}{5}\left( {\frac{1}{{241}} - \frac{1}{{246}}} \right)\]

\[ = \frac{1}{5}\left( {1 - \frac{1}{6} + \frac{1}{6} - \frac{1}{{11}} + ... + \frac{1}{{241}} - \frac{1}{{246}}} \right)\]

\[ = \frac{1}{5}\left( {1 - \frac{1}{{246}}} \right) = \frac{{49}}{{246}}\]

Vậy \[S = \frac{{49}}{{246}}\].


Câu 6:

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm \[O\]. Gọi \[G\] là trọng tâm của tam giác \[SAD\]. Lấy điểm \[M\] thuộc cạnh \[AB\] sao cho \[AB = 3AM\].
Xem đáp án

Phương pháp:

a) Sử dụng định lí ba giao tuyến song song: \[\left\{ \begin{array}{l}\left( \alpha \right) \cap \left( \beta \right) = {d_1}\\\left( \beta \right) \cap \left( \gamma \right) = {d_2}\\\left( \alpha \right) \cap \left( \gamma \right) = {d_3}\\{d_1}//{d_2}\end{array} \right. \Rightarrow {d_3}//{d_1}//{d_2}\].

Cách giải:

Media VietJack

1) Tìm giao tuyến của mặt phẳng \[\left( {SAD} \right)\] và mặt phẳng \[\left( {GBC} \right)\]. Tìm giao điểm \[H\] của đường thẳng \[BC\] với mặt phẳng \[\left( {SGM} \right)\].

Dễ thấy \[G \in \left( {GBC} \right) \cap \left( {SAD} \right)\].

Xét các mặt phẳng: \[\left( {GBC} \right),{\rm{ }}\left( {SAD} \right),{\rm{ }}\left( {ABCD} \right)\] có:

\[\left\{ \begin{array}{l}\left( {GBC} \right) \cap \left( {SAD} \right) = Gx\\\left( {SAD} \right) \cap \left( {ABCD} \right) = AD\\\left( {ABCD} \right) \cap \left( {GBC} \right) = BC\\BC//AD\end{array} \right. \Rightarrow Gx//AB//CD\]

Vậy \[\left( {SAD} \right) \cap \left( {GBC} \right) = Gx\] là đường thẳng đi qua \[G\] và song song \[AD\].

Gọi \[I\] là trung điểm \[AD\], khi đó \[\left( {SGM} \right) \equiv \left( {SIM} \right)\].

Trong \[\left( {ABCD} \right)\], gọi \[H = IM \cap BC \Rightarrow \left\{ \begin{array}{l}H \in IM \subset \left( {SIM} \right)\\H \in BC\end{array} \right. \Rightarrow H = BC \cap \left( {SMG} \right)\].


Câu 7:

2) Chứng minh rằng đường thẳng \[MG\] song song với mặt phẳng \[\left( {SBC} \right)\].
Xem đáp án

Phương pháp:

b) Sử dụng định lí \[\left\{ \begin{array}{l}a \not\subset \left( P \right)\\a//b\\b \subset \left( P \right)\end{array} \right. \Rightarrow a//\left( P \right)\].

Cách giải:

2) Chứng minh rằng đường thẳng \[MG\] song song với mặt phẳng \[\left( {SBC} \right)\].

\[AD//BC\] nên \[\frac{{MI}}{{MH}} = \frac{{MA}}{{MB}} = \frac{1}{2}\]

Xét tam giác \[SIH\]\[\frac{{MI}}{{MH}} = \frac{{GI}}{{GS}} = \frac{1}{2}\] nên theo định lí Talet ta có \[MG//SH\].

\[SH \subset \left( {SBC} \right)\] nên \[MG//\left( {SBC} \right)\].


Câu 8:

3) Mặt phẳng \[\left( \alpha \right)\] đi qua \[M\] và song song với \[AD\] và \[SB\], \[\left( \alpha \right)\] cắt các cạnh \[CD,SD,SA\] lần lượt tại các điểm \[N,P,Q\]. Xác định thiết diện của mặt phẳng \[\left( \alpha \right)\] với hình chóp \[S.ABCD\].
Xem đáp án

Phương pháp:

c) Sử dụng hệ quả \[\left\{ \begin{array}{l}a//\left( P \right)\\a \subset \left( Q \right)\\\left( P \right) \cap \left( Q \right) = d\end{array} \right. \Rightarrow a//d\].

Cách giải:

3) Mặt phẳng \[\left( \alpha \right)\] đi qua \[M\] và song song với \[AD\]\[SB\], \[\left( \alpha \right)\] cắt các cạnh \[CD,SD,SA\] lần lượt tại các điểm \[N,P,Q\]. Xác định thiết diện của mặt phẳng \[\left( \alpha \right)\] với hình chóp \[S.ABCD\].

Ta có: \[\left\{ \begin{array}{l}SB//\left( \alpha \right)\\SB \subset \left( {SAB} \right)\\\left( \alpha \right) \cap \left( {SAB} \right) = MQ\end{array} \right. \Rightarrow MQ//SB\]

Þ Trong \[\left( {SAB} \right)\], kẻ \[Mx//SB\] cắt \[SA\] tại \[Q\].

\[\left\{ \begin{array}{l}AD//\left( \alpha \right)\\AD \subset \left( {SAD} \right)\\\left( \alpha \right) \cap \left( {SAD} \right) = QP\end{array} \right. \Rightarrow QP//AD\]

Þ Trong \[\left( {SAD} \right)\], kẻ \[Qy//AD\] cắt \[SD\] tại \[P\].

\[\left\{ \begin{array}{l}AD//\left( \alpha \right)\\AD \subset \left( {ABCD} \right)\\\left( \alpha \right) \cap \left( {ABCD} \right) = MN\end{array} \right. \Rightarrow MN//AD\]

Þ Trong \[\left( {ABCD} \right)\], kẻ \[Mt//AD\] cắt \[CD\] tại \[N\].

Khi đó \[\left\{ \begin{array}{l}\left( \alpha \right) \cap \left( {SAB} \right) = MQ\\\left( \alpha \right) \cap \left( {SAD} \right) = QP\\\left( \alpha \right) \cap \left( {SCD} \right) = PN\\\left( \alpha \right) \cap \left( {ABCD} \right) = NM\end{array} \right.\] Þ Thiết diện là tứ giác \[MNPQ\].


Câu 9:

Giải phương trình lượng giác sau: \[\frac{{\sin x + \sin 2x}}{{\sin 3x}} = - 1\].
Xem đáp án

Phương pháp:

- Sử dụng công thức cộng \[\sin a + \sin b = 2\sin \frac{{a + b}}{2}\cos \frac{{a - b}}{2}\] biến đổi phương trình về dạng tích.

- Giải phương trình và đối chiếu điều kiện, kết luận nghiệm.

Cách giải:

ĐK: \[\sin 3x \ne 0 \Leftrightarrow 3x \ne k\pi \Leftrightarrow x \ne \frac{{k\pi }}{3}\]

\[{\rm{PT}} \Rightarrow \sin x + \sin 2x = - \sin 3x \Leftrightarrow \left( {\sin x + \sin 3x} \right) + \sin 2x = 0\]

\[ \Leftrightarrow 2\sin 2x\cos x + \sin 2x = 0 \Leftrightarrow \sin 2x\left( {2\cos x + 1} \right) = 0\]

\[ \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\2\cos x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\\cos x = - \frac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = k\pi \\x = \pm \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{k\pi }}{2}\\x = \pm \frac{\pi }{3} + k2\pi \end{array} \right.,{\rm{ }}k \in \mathbb{Z}\]

Biểu diễn các nghiệm trên đường tròn lượng giác ta được:

Media VietJack

Quan sát hình vẽ ta thấy phương trình có nghiệm \[x = \frac{\pi }{2} + k\pi ,{\rm{ }}k \in \mathbb{Z}\] (hai điểm màu xanh).


Câu 10:

Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập được tất cả bao nhiêu số tự nhiên chẵn có năm chữ số khác nhau và trong năm chữ số đó có đúng hai chữ số lẻ và hai chữ số lẻ này không đứng cạnh nhau.
Xem đáp án

Phương pháp:

- Đếm các số chẵn có 5 chữ số khác nhau mà có đúng hai chữ số lẻ.

- Đếm các số chẵn có 5 chữ số khác nhau mà có hai chữ số lẻ đứng cạnh nhau.

- Trừ các kết quả cho nhau ta được đáp số.

Cách giải:

Gọi số có năm chữ số có dạng \[\overline {abcde} \].

TH1: \[e = 0\] có 1 cách chọn.

Chọn 2 chữ số lẻ và 2 chữ số chẵn và xếp vị trí cho chúng có \[C_5^2.C_4^2.4!\] cách chọn.

Do đó có \[C_5^2.C_4^2.4!\] số.

TH2: \[e \in \left\{ {2;4;6;8} \right\}\] có 4 cách chọn.

+) Nếu \[a\] chẵn, \[a \ne 0,{\rm{ }}a \ne e\] thì có 3 cách chọn.

Số cách chọn 3 chữ số còn lại (1 chữ số chẵn và 2 chữ số lẻ) và xếp vị trí cho chúng là \[C_3^1.C_5^2.3!\] cách chọn.

Do đó có \[3.C_3^1.C_5^2.3!\] số.

+) Nếu \[a\] lẻ thì có 5 cách chọn.

Số cách chọn 3 chữ số còn lại (2 chữ số chẵn và 1 chữ số lẻ) và xếp vị trí cho chúng là \[C_4^2.C_4^1.3!\] cách chọn.

Do đó có \[5.C_4^2.C_4^1.3!\] số.

Khi đó số các số chẵn có 5 chữ số khác nhau mà chỉ có đúng 2 chữ số lẻ là

\[C_5^2.C_4^2.4! + 4.\left( {3.C_3^1.C_5^2.3! + 5.C_4^2.C_4^1.3!} \right) = 6480\] số.

Ta tính các số chẵn có 5 chữ số khác nhau chỉ có 2 chữ số lẻ mà chúng đứng cạnh nhau.

Coi hai chữ số lẻ đứng cạnh nhau là một chữ số \[A\], có \[A_5^2\] cách chọn và sắp xếp vị trí của hai chữ số trong \[A\].

Số có dạng \[\overline {abcd} \] với \[a,b,c,d \in \left\{ {A;0;2;4;6;8} \right\}\].

+) Nếu \[a = A\] thì có \[A_5^3\] cách chọn \[b,c,d\].

+) Nếu \[a \ne A,{\rm{ }}a \ne 0\] thì có 4 cách chọn.

\[A\] có thể đứng ở bị trí \[b\] hoặc \[c\] nên có 2 cách xếp.

\[A_4^2\] cách chọn và sắp xếp hai chữ số còn lại.

Do đó có \[A_5^2\left( {A_5^3 + 4.2.A_4^2} \right) = 3120\]

Vậy có \[6480 - 3120 = 3360\] số.


Bắt đầu thi ngay

Bài thi liên quan


Có thể bạn quan tâm