Câu hỏi:
03/04/2024 55
Một hộp có chứa 4 quả cầu màu đỏ, 5 quả cầu màu xanh và 7 quả cầu màu vàng. Lấy ngẫu nhiên cùng lúc ra 4 quả cầu từ hộp đó. Tính xác suất sao cho 4 quả cầu được lấy ra có đúng 1 quả cầu màu đỏ và không quá 2 quả cầu màu vàng.
Trả lời:
Phương pháp:
- Tính số phần tử không gian mẫu \[n\left( \Omega \right)\]
- Tính số khả năng có lợi cho biến cố \[A\] đã cho.
- Tính xác suất \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\].
Cách giải:
Chọn 4 trong 16 quả cầu, \[n\left( \Omega \right) = C_{16}^4 = 1820\].
Gọi \[A\] là biến cố: “Có đúng 1 quả cầu đỏ và không quá 2 quả cầu vàng”
TH1: Chọn được 1 quả cầu đỏ, 2 quả cầu vàng, 1 quả cầu xanh có \[C_4^1.C_7^2.C_5^1 = 420\] cách.
TH2: Chọn được 1 quả cầu đỏ, 1 quả cầu vàng, 2 quả cầu xanh có \[C_4^1.C_7^1.C_5^2 = 280\] cách.
TH3: Chọn được 1 quả cầu đỏ, 0 quả cầu vàng, 3 quả cầu xanh có \[C_4^1.C_7^0.C_5^3 = 40\] cách.
Do đó \[n\left( A \right) = 420 + 280 + 40 = 740\].
Xác suất \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{740}}{{1820}} = \frac{{37}}{{91}}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập được tất cả bao nhiêu số tự nhiên chẵn có năm chữ số khác nhau và trong năm chữ số đó có đúng hai chữ số lẻ và hai chữ số lẻ này không đứng cạnh nhau.
Câu 2:
3) Mặt phẳng \[\left( \alpha \right)\] đi qua \[M\] và song song với \[AD\] và \[SB\], \[\left( \alpha \right)\] cắt các cạnh \[CD,SD,SA\] lần lượt tại các điểm \[N,P,Q\]. Xác định thiết diện của mặt phẳng \[\left( \alpha \right)\] với hình chóp \[S.ABCD\].
Câu 3:
Cho cấp số cộng \[\left( {{u_n}} \right)\] là một dãy số tăng thỏa mãn điều kiện \[\left\{ \begin{array}{l}{u_{31}} + {u_{34}} = 11\\u_{31}^2 + u_{34}^2 = 101\end{array} \right.\].
Tìm số hạng đầu tiên \[{u_1}\], công sai \[d\] và số hạng tổng quát của cấp số cộng đó.
Cho cấp số cộng \[\left( {{u_n}} \right)\] là một dãy số tăng thỏa mãn điều kiện \[\left\{ \begin{array}{l}{u_{31}} + {u_{34}} = 11\\u_{31}^2 + u_{34}^2 = 101\end{array} \right.\].
Tìm số hạng đầu tiên \[{u_1}\], công sai \[d\] và số hạng tổng quát của cấp số cộng đó.