Cho điểm M(x0; y0) nằm trên đường tròn (C) tâm I(a; b) và cho điểm M(x; y) tùy ý trong mặt phẳng Oxy. Gọi ∆ là tiếp tuyến của (C) tại M0

Hoạt động khám phá 2 trang 61 Toán lớp 10 Tập 2: Cho điểm M(x0; y0) nằm trên đường tròn (C) tâm I(a; b) và cho điểm M(x; y) tùy ý trong mặt phẳng Oxy. Gọi ∆ là tiếp tuyến của (C) tại M0.

Hoạt động khám phá 2 trang 61 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10

a) Viết tọa độ của hai vectơ M0M  M0I.

b) Viết biểu thức tọa độ của tích vô hướng của hai vectơ M0M  M0I.

c) Hệ thức M0M.M0I=0 cho ta phương trình của đường thẳng nào?

 

Trả lời

a) Biểu thức tọa độ của hai vectơ M0M  M0I là:

M0M = (x – x0; y – y0);

M0I = (a – x0; b – y0).

b) Biểu thức tọa độ tích vô hướng của hai vectơ M0M  M0I là:

M0M.M0I = (x – x0)(a – x0) + (y – y0).(b – y0).

c) Ta có hệ thức M0M.M0I=0

⇔ (x – x0)(a – x0) + (y – y0).(b – y0) = 0 (*)

Vì ∆ là tiếp tuyến của đường tròn (C) nên ∆ ⊥ IM0. Do đó phương trình đường thẳng ∆ nhận vectơ M0M làm VTPT và đi qua điểm M0(x0; y0) là:

(a – x0)(x – x0) + (b – y0)(y – y0) = 0

Và đây cũng chính là phương trình (*).

Vậy hệ thức M0M.M0I=0 là phương trình của đường thẳng ∆ là tiếp tuyến của đường tròn (C).

Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Toạ độ của vectơ

Bài 2: Đường thẳng trong mặt phẳng toạ độ

Bài 3: Đường tròn trong mặt phẳng toạ độ

Bài 4: Ba đường conic trong mặt phẳng tọa độ

Bài tập cuối chương 9

Bài 1: Không gian mẫu và biến cố

Câu hỏi cùng chủ đề

Xem tất cả