Giải Toán 10 Bài 18: Phương trình quy về phương trình bậc hai
1. Phương trình dạng
HĐ1 trang 25 Toán 10 Tập 2: Cho phương trình .
a) Bình phương hai vế phương trình để khử căn và giải phương trình nhận được.
b) Thử lai các giá trị x tìm được ở câu a có thỏa mãn phương trình đã cho hay không?
Lời giải:
a) Bình phương hai vế của phương trình ta được:
x2 – 3x + 2 = – x2 – 2x + 2 (1)
Giải phương trình trên ta có:
(1) ⇔ 2x2 – x = 0
⇔ x(2x – 1) = 0
⇔ x = 0 hoặc 2x – 1 = 0
⇔ x = 0 hoặc x =
b) Thử lại ta có:
+ Với x = 0, thay vào phương trình đã cho ta được:
(luôn đúng).
+ Với x = , thay vào phương trình đã cho ta được:
(luôn đúng)
Vậy các giá trị x tìm được ở câu a thỏa mãn phương trình đã cho.
Luyện tập 1 trang 25 Toán 10 Tập 2: Giải các phương trình sau:
a) ;
b) .
Lời giải:
a)
Bình phương hai vế của phương trình trên ta được,
3x2 – 6x + 1 = –2x2 – 9x + 1.
Thu gọn phương trình trên ta được: 5x2 + 3x = 0 ⇔ x(5x + 3) = 0 ⇔ x = 0 hoặc x = .
Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy cả hai giá trị x = 0 và x = đều thỏa mãn.
Vậy tập nghiệm của phương trình đã cho là S = .
b)
Bình phương hai vế của phương trình trên ta được,
2x2 – 3x – 5 = x2 – 7.
Thu gọn ta được: x2 – 3x + 2 = 0.
Giải phương trình bậc hai x2 – 3x + 2 = 0 tìm được x = 1 hoặc x = 2.
Thay lần lượt giá trị của x vào phương trình đã cho, ta thấy không có giá trị nào của x thỏa mãn.
Vậy phương trình đã cho vô nghiệm.
2. Phương trình dạng
HĐ2 trang 25 Toán 10 Tập 2: Cho phương trình .
a) Bình phương hai vế và giải phương trình nhận được.
b) Thử lại các giá trị x tìm được ở câu a có thỏa mãn phương trình hay không?
Lời giải:
a) Bình phương hai vế của phương trình đã cho ta được:
26x2 – 63x + 38 = 25x2 – 60x + 36 (1).
Giải phương trình (1).
Ta có: (1) ⇔ x2 – 3x + 2 = 0 ⇔ x = 1 hoặc x = 2.
b) Thử lại
+ Với x = 1 thay vào phương trình đã cho ta được:
(vô lí).
+ Với x = 2 thay vào phương trình đã cho ta được:
⇔ 4 = 4 (luôn đúng)
Vậy giá trị x = 2 thỏa mãn phương trình đã cho.
Luyện tập 2 trang 26 Toán 10 Tập 2: Giải các phương trình sau:
a) ;
b) .
Lời giải:
a)
Bình phương hai vế của phương trình ta được
2x2 + x + 3 = 1 – 2x + x2.
Thu gọn ta được: x2 + 3x + 2 = 0 ⇔ x2 + x + 2x + 2 = 0 ⇔ x(x + 1) + 2(x + 1) = 0
⇔ (x + 1)(x + 2) = 0 ⇔ x = – 1 hoặc x = – 2.
Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy cả hai giá trị x = – 1 và x = – 2 đều thỏa mãn.
Vậy tập nghiệm của phương trình đã cho là S = {– 1; – 2}.
b)
Bình phương hai vế của phương trình ta được
3x2 – 13x + 14 = x2 – 6x + 9.
Thu gọn ta được: 2x2 – 7x + 5 = 0.
Giải phương trình bậc hai này ta được x = 1 hoặc x = .
Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy cả hai giá trị đều không thỏa mãn.
Vậy phương trình đã cho vô nghiệm.
Hướng dẫn
Ta mô hình hóa bài toán như trong Hình 6.20: Trạm hải đăng ở vị trí A; bến Bính ở B và thôn Hoành ở C.
Giả sử bác Việt chèo thuyền cập bến ở vị trí M và ta đặt BM = x (km) (x > 0). Để hai người không phải chờ nhau thì thời gian chèo thuyền bằng thời gian kéo xe nên ta có phương trình:
.
Giải phương trình này sẽ tìm được vị trí hai người dự định gặp nhau.
Lời giải:
Ta mô hình hóa bài toán như trong Hình 6.20: Trạm hải đăng ở vị trí A; bến Bính ở B và thôn Hoành ở C.
Giả sử bác Việt chèo thuyền cập bến ở vị trí M và ta đặt BM = x (km) (x > 0).
Ta có: BC = BM + MC ⇔ MC = BC – BM = 9,25 – x (km) hay quãng đường của anh Nam từ thôn Hoành đến điểm gặp nhau của 2 người là 9,25 – x (km).
Vận tốc của anh Nam là 5 km/h nên thời gian di chuyển của anh Nam đến điểm hẹn gặp nhau là: (giờ).
Tam giác ABC vuông tại B, theo định lí Pythagore ta có:
AM2 = AB2 + BM2 = 42 + x2 = x2 + 16
Suy ra AM = (km) hay quãng đường di chuyển của bác Việt đến điểm hẹn là (km).
Vận tốc của bác Việt là 4 km/h nên thời gian di chuyển của bác Việt tới điểm hẹn gặp nhau là: (giờ).
Để hai người không phải chờ nhau thì thời gian chèo thuyền bằng thời gian kéo xe nên ta có phương trình:
(1).
Giải phương trình trên ta có:
(1)
Bình phương hai vế phương trình trên ta được:
25(x2 + 16) = 1369 – 296x + 16x2
⇔ 9x2 + 296x – 969 = 0
⇔ x = 3 hoặc x =
Thử lại ta thấy cả hai giá trị x = 3 và x = đều thỏa mãn phương trình (1).
Mà điều kiện của x là x > 0 nên ta chọn x = 3.
Vậy vị trí hai người hẹn gặp nhau cách bến Bính 3 km hay cách thôn Hoành 6,25 km.
Bài tập
Bài 6.20 trang 27 Toán 10 Tập 2: Giải các phương trình sau:
a) ;
b) ;
c) ;
d) .
Lời giải:
a)
Bình phương hai vế của phương trình ta được:
3x2– 4x – 1 = 2x2 – 4x + 3
⇔ x2 – 4 = 0
⇔ x2 = 4
⇔ x = 2 hoặc x = – 2.
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả hai giá trị x = 2 và x = – 2 thỏa mãn.
Vậy tập nghiệm của phương trình là S = {– 2; 2}.
b)
Bình phương hai vế của phương trình ta được:
x2 + 2x – 3 = – 2x2 + 5
⇔ 3x2 + 2x – 8 = 0
⇔ x = – 2 hoặc x = .
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy chỉ có giá trị x = thỏa mãn.
Vậy nghiệm của phương trình là x = .
c)
Bình phương hai vế của phương trình ta được:
2x2 + 3x – 3 = – x2 – x + 1
⇔ 3x2 + 4x – 4 = 0
⇔ x = – 2 hoặc x = .
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả hai giá trị đều không thỏa mãn.
Vậy phương trình vô nghiệm.
d)
Bình phương hai vế của phương trình ta được:
– x2 + 5x – 4 = – 2x2 + 4x + 2
⇔ x2 + x – 6 = 0
⇔ x = – 3 hoặc x = 2.
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x = 2 thỏa mãn.
Vậy nghiệm của phương trình là x = 2.
Bài 6.21 trang 27 Toán 10 Tập 2: Giải các phương trình sau:
a) ;
b) ;
c) ;
d)
Lời giải:
a)
Bình phương hai vế của phương trình ta được
6x2+ 13x + 13 = 4x2 + 16x + 16
⇔ 2x2 – 3x – 3 = 0
⇔ x = hoặc x = .
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả hai giá trị x = và x = đều thỏa mãn.
Vậy tập nghiệm của phương trình là S = .
b)
Bình phương hai vế của phương trình ta được
2x2 + 5x + 3 = 9 + 6x + x2
⇔ x2 – x – 6 = 0
⇔ x = – 2 hoặc x = 3.
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy không có giá trị nào thỏa mãn.
Vậy phương trình vô nghiệm.
c)
Bình phương hai vế của phương trình ta được
3x2 – 17x + 23 = x2 – 6x + 9
⇔ 2x2 – 11x + 14 = 0
⇔ x = 2 hoặc x = .
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x = thỏa mãn.
Vậy nghiệm của phương trình là x = .
d)
Bình phương hai vế của phương trình ta được
– x2 + 2x + 4 = x2 – 4x + 4
⇔ – 2x2 + 6x = 0
⇔ – 2x(x – 3) = 0
⇔ x = 0 hoặc x = 3.
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x = 3 thỏa mãn.
Vậy nghiệm của phương trình là x = 3.
Lời giải:
Đặt AH = x, x > 0.
Xét tam giác AHD vuông tại H, theo định lí Pythagore ta có:
AD2 = AH2 + HD2 ⇔ HD2 = AD2 – AH2 = 52 – x2 = 25 – x2
Suy ra HD = .
Ta có HC = HD + DC = .
HB = AH + AB = x + 2
Xét tam giác HBC vuông tại H, theo định lí Pythagore ta có:
BC2 = HB2 + HC2
⇔ 132 = (x + 2)2 +
⇔ x2 + 4x + 4 + 25 – x2 + 16+ 64 – 169 = 0
⇔ 16 = – 4x + 76
⇔ 4 = – x + 19
Để tính x, ta cần giải phương trình: 4 = – x + 19 (1).
Bình phương hai vế của phương trình (1) ta được:
16.(25 – x2) = x2 – 38x + 361
⇔ 17x2 – 38x – 39 = 0
⇔ x = 3 hoặc x = .
Thay lần lượt các giá trị trên vào phương trình (1), ta thấy hai giá trị x = 3 và x = đều thỏa mãn.
Vì điều kiện của x là x > 0 nên ta chọn x = 3.
Do đó ta tính được AH = 3.
Suy ra HD = .
HC = 4 + 8 = 12
HB = 3 + 2 = 5
Diện tích tam giác HAD là S1 = HA . HD = . 3 . 4 = 6.
Diện tích tam giác HBC là S2 = HB . HC = . 5 . 12 = 30.
Vậy diện tích tứ giác ABCD là S = S2 – S1 = 30 – 6 = 24.
Lời giải:
Đổi: 200 m = 0,2 km, 50 m = 0,05 km.
Ta mô hình hóa bài toán như trong hình vẽ sau:
Hùng ở vị trí B, Minh ở vị trí A, H là vị trí lề đường mà Minh đi theo hướng vuông góc với BC từ vị trí A.
Giả sử C là vị trí Hùng và Minh gặp nhau. Đặt CH = x (km) (x > 0).
Áp dụng định lí Pythagore tam giác HAB vuông tại H, ta có:
AB2 = HB2 + HA2 ⇔ HB2 = AB2 – HA2 = (0,2)2 – (0,05)2 = 0,0375
Suy ra HB = .
Ta có: BC + CH = HB ⇔ BC = HB – CH = .
Do đó quãng đường di chuyển của Hùng từ B đến điểm gặp nhau C dài (km).
Vận tốc đạp xe của Hùng là 15 km/h nên thời gian di chuyển của Hùng từ B đến điểm gặp nhau là: (giờ).
Áp dụng định lí Pythagore trong tam giác CHA vuông tại H, ta có:
CA2= HA2 + HC2 = (0,05)2 + x2 = 0,0025 + x2
Suy ra CA = hay quãng đường di chuyển của Minh từ vị trí A đến điểm gặp nhau C dài (km).
Vận tốc đi bộ của Minh là 5 km/h nên thời gian di chuyển của Minh từ vị trí A đến điểm gặp nhau C là: (giờ).
Để hai bạn gặp nhau mà không bạn nào phải chờ người kia thì thời gian di chuyển từ vị trí A đến C của Minh phải bằng thời gian di chuyển từ vị trí B đến C của Hùng.
Khi đó ta có phương trình: (*).
Giải phương trình (*) ta có:
(*)
Bình phương hai vế của phương trình trên ta được:
3600.(0,0025 + x2) = 15 – 40x + 400x2
⇔ 3200x2 + 40x – 6 = 0
⇔ x = hoặc x = .
Thay lần lượt các giá trị này vào phương trình (*) ta thấy cả hai giá trị đều thỏa mãn.
Lại có điều kiện của x là x > 0 nên ta chọn x = ≈ 0,0254.
Suy ra CH = x ≈ 0,0254 km = 25,4 m.
Do đó, BC = BH – CH ≈ km = 168,2 m.
Vậy vị trí C thỏa mãn yêu cầu đề bài là điểm cách H một khoảng 25,4 m hay C cách B một khoảng 168,2 m.
Xem thêm lời giải bài tập SGK Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài tập cuối chương 6 trang 28, 29
Bài 19: Phương trình đường thẳng
Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách