Câu hỏi:
19/01/2024 57
Phương trình: \[\sqrt {x + 2} = 4 - x\] có bao nhiêu nghiệm
Phương trình: \[\sqrt {x + 2} = 4 - x\] có bao nhiêu nghiệm
A. 0;
A. 0;
B. 1;
B. 1;
C. 2;
C. 2;
D. 3.
D. 3.
Trả lời:
Đáp án đúng là: B
Bình phương hai vế ta được
x + 2 = (4 – x)2
\( \Rightarrow \) x + 2 = x2 – 8x + 16
\( \Rightarrow \) x2 – 9x + 14 = 0
\( \Rightarrow \) x = 2 hoặc x = 7
Thay lần lượt các nghiệm trên vào phương trình đã cho, ta thấy x = 2 thoả mãn
Vậy phương trình có nghiệm x = 2
Đáp án đúng là: B
Bình phương hai vế ta được
x + 2 = (4 – x)2
\( \Rightarrow \) x + 2 = x2 – 8x + 16
\( \Rightarrow \) x2 – 9x + 14 = 0
\( \Rightarrow \) x = 2 hoặc x = 7
Thay lần lượt các nghiệm trên vào phương trình đã cho, ta thấy x = 2 thoả mãn
Vậy phương trình có nghiệm x = 2
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Tổng các nghiệm phương trình \({x^2} - 6x + 9 = 4\sqrt {{x^2} - 6x + 6} \)
Tổng các nghiệm phương trình \({x^2} - 6x + 9 = 4\sqrt {{x^2} - 6x + 6} \)
Câu 4:
Số nghiệm của phương trình: \[\sqrt {x + 8 - 2\sqrt {x + 7} } = 2 - \sqrt {x + 1 - \sqrt {x + 7} } \] là:
Số nghiệm của phương trình: \[\sqrt {x + 8 - 2\sqrt {x + 7} } = 2 - \sqrt {x + 1 - \sqrt {x + 7} } \] là:
Câu 5:
Số nghiệm của phương trình \[\sqrt {8 - {x^2}} = \sqrt {x + 2} \]là
Số nghiệm của phương trình \[\sqrt {8 - {x^2}} = \sqrt {x + 2} \]là
Câu 8:
Số nghiệm của phương trình \(\sqrt {2{x^2} - 2x + 4} = \sqrt {{x^2} - x + 2} \)
Số nghiệm của phương trình \(\sqrt {2{x^2} - 2x + 4} = \sqrt {{x^2} - x + 2} \)
Câu 9:
Tích các nghiệm của phương trình (x + 4)(x + 1) – 3\(\sqrt {{x^2} + 5x + 2} \) = 6 là
Tích các nghiệm của phương trình (x + 4)(x + 1) – 3\(\sqrt {{x^2} + 5x + 2} \) = 6 là
Câu 11:
Tập nghiệm của phương trình: \[\sqrt {3 - x + {x^2}} - \sqrt {2 + x - {x^2}} = 1\] là:
Tập nghiệm của phương trình: \[\sqrt {3 - x + {x^2}} - \sqrt {2 + x - {x^2}} = 1\] là:
Câu 12:
Phương trình: \[x + \sqrt {4 - {x^2}} = 2 + 3x\sqrt {4 - {x^2}} \] có bao nhiêu nghiệm lớn hơn hoặc bằng 0:
Phương trình: \[x + \sqrt {4 - {x^2}} = 2 + 3x\sqrt {4 - {x^2}} \] có bao nhiêu nghiệm lớn hơn hoặc bằng 0:
Câu 13:
Nghiệm của phương trình \[\sqrt {5{x^2} - 6x - 4} = 2(x - 1)\] là
Nghiệm của phương trình \[\sqrt {5{x^2} - 6x - 4} = 2(x - 1)\] là
Câu 14:
Phương trình: \[\sqrt {{x^2} + x + 4} + \sqrt {{x^2} + x + 1} = \sqrt {2{x^2} + 2x + 9} \] có tích các nghiệm là:
Phương trình: \[\sqrt {{x^2} + x + 4} + \sqrt {{x^2} + x + 1} = \sqrt {2{x^2} + 2x + 9} \] có tích các nghiệm là: