Ở Trung học cơ sở, ta quen thuộc với các công thức khai triển: (a + b)^2 = a^2 + 2ab + b^2
320
13/06/2023
Hoạt động khởi động trang 33 Toán lớp 10 Tập 2: Ở Trung học cơ sở, ta quen thuộc với các công thức khai triển:
(a + b)2 = a2 + 2ab + b2;
(a + b)3 = a3 + 3a2b + 3ab2 + b3.
Với số tự nhiên n > 3 thì công thức khai triển của biểu thức (a + b)n sẽ như thế nào?
Trả lời
Sau bài học này ta sẽ trả lời được câu hỏi trên như sau:
Với n = 4, ta có:
(a + b)4 = [(a + b)2]2 = [a2 + 2ab + b2]2 = [(a2 + b2) + 2ab]2
= a4 + 2a2b2 + b4 + 2(a2 + b2).2ab + 4a2b2 = a4 + 2a2b2 + b4 + 2a3b + 2ab3 + 4a2b2
= a4 + 2a3b + 6a2b2 + 2ab3 + b4.
(a + b)5 = (a + b)3(a + b)2 = (a3 + 3a2b + 3ab2 + b3)(a2 + 2ab + b2)
= a5 + 2a4b + a3b2 + 3a4b + 6a3b2 + 3a2b3 + 3a3b2 + 6a2b3 + 3ab4 + a2b3 + 2ab4 + b5
= a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5
Với n là một số tự nhiên ta có công thức tổng quát:
(a + b)n = .
Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Quy tắc cộng và quy tắc nhân
Bài 2: Hoán vị, chỉnh hợp và tổ hợp
Bài 3: Nhị thức Newton
Bài tập cuối chương 8
Bài 1: Toạ độ của vectơ
Bài 2: Đường thẳng trong mặt phẳng toạ độ