Muốn đo chiều cao của một ngọn tháp, người ta lấy hai điểm A, B trên mặt đất có khoảng cách AB = 12 m cùng thẳng hàng với chân C của tháp

Bài 10 trang 79 Toán lớp 10 Tập 1Muốn đo chiều cao của một ngọn tháp, người ta lấy hai điểm A, B trên mặt đất có khoảng cách AB = 12 m cùng thẳng hàng với chân C của tháp để đặt hai giác kế. Chân của hai giác kế có chiều cao là h = 1,2 m. Gọi D là đỉnh tháp và hai điểm A1, B1 cùng thẳng hàng với C1 thuộc chiều cao CD của tháp. Người ta đo được DA1C1^=49o, DB1C1^=35o. Tính chiều cao CD của tháp.

Giải Toán 10 Bài tập cuối chương 4 - Chân trời sáng tạo (ảnh 1)

Trả lời

Ta có: DA1B1^=1800490=1310

Xét tam giác A1B1Dcó: A1DB1^=1800(DA1B1^+A1B1D^)=140

Áp dụng định lí sin ta có:

A1DsinDB1C1^=A1B1sinA1DB1^A1D=A1B1.sinDB1C1^sinA1DB1^=12.sin35°sin14°28,45

Xét tam giác DC1A1 vuông tại C1 ta có:

sin490=DC1DA1DC1=DA1.sin49021,47m

Ta có: CD = 21,47 + 1,2 = 22,67 m.

Vậy chiều cao của tháp khoảng 22,67 m.

Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 2: Định lí côsin và định lí sin

Bài 3: Giải tam giác và ứng dụng thực tế

Bài tập cuối chương 4

Bài 1: Khái niệm vectơ

Bài 2: Tổng và hiệu của hai vectơ

Bài 3: Tích của một số với một vectơ

Câu hỏi cùng chủ đề

Xem tất cả