Một bể chứa nước có hai vòi thoát. Biết rằng khi bể chứa đầy nước thì thời gian cần thiết để xả hết nước trong bể mà chỉ dùng vòi thứ nhất là x (giờ)

Bài tập 6.43 trang 15 SBT Toán 8 Tập 2: Một bể chứa nước có hai vòi thoát. Biết rằng khi bể chứa đầy nước thì thời gian cần thiết để xả hết nước trong bể mà chỉ dùng vòi thứ nhất là x (giờ) và thời gian cần thiết để xả hết nước trong bể mà chỉ dùng vòi thứ hai là y (giờ).

a) Viết phân thức biểu thị thời gian cần thiết để xả hết nước trong bể (khi bể chứa đầy nước) nếu mở cả hai vòi.

b) Tính thời gian cần thiết để xả hết nước trong bể (khi bể chứa đầy nước) nếu mở cả hai vòi, biết rằng khi chỉ mở một vòi, vòi thứ nhất xả hết nước trong 2 giờ, vòi thứ hai xả hết nước trong 3 giờ.

Trả lời

a) Gọi t (giờ) là thời gian cần thiết để xả hết nước trong bể (khi bể chứa đầy nước) khi mở cả hai vòi.

Như vậy, trong một giờ cả hai vòi cùng mở sẽ xả được 1t(bể)

Mặt khác, từ giả thiết suy ra trong một giờ, một mình vòi thứ nhất xả hết 1x+1y=x+yxy (bể), một mình vòi thứ hai xả được1y(bể).

Do đó, trong một giờ cả hai vòi cùng mở sẽ xả được 1x+1y=x+yxy (bể).

Từ đó suy ra: 1t=x+yxy. Do đó t=xyx+y.

b) Với x = 2, y = 3 thì t=2.32+3=1,2 giờ = 1 giờ 12 phút.

Do đó, trong trường hợp khi mở một vòi, vòi thứ nhất xả hết nước trong 2 giờ, vòi thứ hai xả hết nước trong 3 giờ, khi mở cả hai vòi sẽ xả được hết nước trong bể sau 1 giờ 12 phút.

Xem thêm các bài giải SBT Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả