Lập phương trình tổng quát và phương trình tham số của đường thẳng d trong mỗi trường hợp sau

Bài 6 trang 103 Toán 10 Tập 2: Lập phương trình tổng quát và phương trình tham số của đường thẳng d trong mỗi trường hợp sau:

a) d đi qua điểm A(– 3; 2) và có một vectơ pháp tuyến là n=2;3;

b) d đi qua điểm B(– 2; – 5) và có một vectơ chỉ phương là u=7;6;

c) d đi qua hai điểm C(4; 3) và D(5; 2).

Trả lời

a) + Đường thẳng d đi qua điểm A(– 3; 2) và có một vectơ pháp tuyến là n=2;3.

Vậy phương trình tổng quát của đường thẳng d là:

2[x – (– 3)] – 3(y – 2) = 0 hay 2x – 3y + 12 = 0.

 + Đường thẳng d có một vectơ pháp tuyến là n=2;3 suy ra d có một vectơ chỉ phương là u=3;  2.

Vậy phương trình tham số của đường thẳng d là x=3+3ty=2+2t (t là tham số).

b) + Đường thẳng d đi qua điểm B(– 2; – 5) và có một vectơ chỉ phương là u=7;6.

Vậy phương trình tham số của đường thẳng d là x=27ty=5+6t (t là tham số).

+ Đường thẳng d có một vectơ chỉ phương là u=7;6 nên d có một vectơ pháp tuyến là n=6;7.

Vậy phương trình tổng quát của đường thẳng d là:

6(x + 2) + 7(y + 5) = 0 hay 6x + 7y + 47 = 0.

c) Ta có: CD=54;23, suy ra CD=1;1.

+ Đường thẳng d đi qua 2 điểm C, D nên có một vectơ chỉ phương là u=CD=1;1.

Vậy phương trình tham số của đường thẳng d là x=4+ty=3t (t là tham số).

+ Đường thẳng d có vectơ chỉ phương là u=1;1 nên d có một vectơ pháp tuyến là n=1;​   1.

Vậy phương trình tổng quát của đường thẳng d là:

1(x – 4) + 1(y – 3) = 0 hay x + y – 7 = 0.

Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh diều hay, chi tiết khác:

Bài 3: Phương trình đường thẳng

Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Bài 5: Phương trình đường tròn

Bài 6: Ba đường conic

Bài tập cuối chương 7

Thực hành phần mềm Geogebra

Câu hỏi cùng chủ đề

Xem tất cả