Cho biết mỗi đường conic có phương trình dưới đây là đường conic dạng nào (elip, hypebol, parabol) và tìm tọa độ tiêu điểm của đường conic đó

Bài 10 trang 104 Toán 10 Tập 2Cho biết mỗi đường conic có phương trình dưới đây là đường conic dạng nào (elip, hypebol, parabol) và tìm tọa độ tiêu điểm của đường conic đó.

a) y2 = 18x;

b) x264+y225=1;

c) x29y216=1

Trả lời

a) Ta có: y2 = 18x  y2 = 2 . 9 . x

Vậy phương trình trên là phương trình của parabol với p = 9.

Ta có p2=92.

Vậy tọa độ tiêu điểm của parabol là F92;0.

b) x264+y225=1x282+y252=1.

Vậy phương trình trên là phương trình của elip với a = 8, b = 5 thỏa mãn a > b > 0.

Suy ra c2 = a2 – b2 = 64 – 25 = 39.

Do đó, c = 39.

Vậy tọa độ các tiêu điểm của elip là F139;  0,  F239;  0.

c) x29y216=1x232y242=1.

Vậy phương trình trên là phương trình của hypebol với a = 3, b = 4 thỏa mãn a > 0, b > 0.

Suy ra c2 = a2 + b2 = 9 + 16 = 25.

Do đó, c = 5.

Vậy tọa độ các tiêu điểm của hypebol là F1(– 5; 0) và F2(5; 0).

Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh diều hay, chi tiết khác:

Bài 3: Phương trình đường thẳng

Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Bài 5: Phương trình đường tròn

Bài 6: Ba đường conic

Bài tập cuối chương 7

Thực hành phần mềm Geogebra

Câu hỏi cùng chủ đề

Xem tất cả