Hình 46 mô phỏng một trạm thu phát sóng điện thoại di động đặt ở vị trí I có toạ độ (– 2; 1) trong mặt phẳng toạ độ (đơn vị trên hai trục là ki-lô-mét)

Bài 6 trang 92 Toán 10 Tập 2Hình 46 mô phỏng một trạm thu phát sóng điện thoại di động đặt ở vị trí I có toạ độ (– 2; 1) trong mặt phẳng toạ độ (đơn vị trên hai trục là ki-lô-mét).

Giải Toán 10 Bài 5 (Cánh diều): Phương trình đường tròn (ảnh 1) 

a) Lập phương trình đường tròn mô tả ranh giới bên ngoài của vùng phủ sóng, biết rằng trạm thu phát sóng đó được thiết kế với bán kính phủ sóng 3 km.

b) Nếu người dùng điện thoại ở vị trí có toạ độ (– 1; 3) thì có thể sử dụng dịch vụ của trạm này không? Giải thích.

c) Tính theo đường chim bay, xác định khoảng cách ngắn nhất để một người ở vị trí có toạ độ (– 3; 4) di chuyển được tới vùng phủ sóng theo đơn vị ki-lô-mét (làm tròn kết quả đến hàng phần mười).

Trả lời

a) Đường tròn mô tả ranh giới bên ngoài của vùng phủ sóng có tâm I(– 2; 1) và bán kính R = 3.

Vậy phương trình đường tròn là

[x – (– 2)]2 + (y – 1)2 = 32 hay (x + 2)2 + (y – 1)2 = 9.

b) Gọi M(– 1; 3) là vị trí của người dùng điện thoại.

Khoảng cách từ tâm I của đường tròn mô tả ranh giới bên ngoài của vùng phủ sóng tới vị trí M(– 1; 3) là

IM = 122+312=5.

Mà 5<3 nên IM < R.

Khi đó vị trí M(– 1; 3) nằm trong đường tròn mô tả ranh giới bên ngoài của vùng phủ sóng.

Vậy người dùng điện thoại ở vị trí có tọa độ (– 1; 3) có thể sử dụng dịch vụ của trạm thu  phát sóng này.

c) Gọi vị trí người đó đang đứng là A(– 3; 4).

Ta có: AI=23;14, do đó AI=1;3.

Suy ra AI=12+32=10 > 3 = R.

Vì AI > R nên A nằm ngoài đường tròn ranh giới.

Giả sử đường thẳng AI cắt đường tròn tại điểm B.

Do đó, AB là khoảng cách từ A đến vùng phủ sóng.

Giải Toán 10 Bài 5 (Cánh diều): Phương trình đường tròn (ảnh 1) 

Đường thẳng AI có vectơ AI=1;3 vectơ chỉ phương.

Suy ra AI có vectơ pháp tuyến là n=3;  1.

Vậy phương trình đường thẳng AI là

3(x + 3) + 1(y – 4) = 0 hay 3x + y + 5 = 0.

Vì B là giao điểm của AI và đường tròn mô tả ranh giới nên tọa độ của điểm B là nghiệm của hệ phương trình 3x+y+5=0x+22+y12=9.

Giải hệ phương trình ta có:

3x+y+5=0x+22+y12=9

y=3x5x+22+3x512=9

y=3x5x2+4x+4+9x2+36x+36=9 

y=3x510x2+40x+31=0

y=3x5x=20+31010x=2031010

x=20+31010y=1091010x=2031010y=10+91010B20+31010;  1091010B2031010;  10+91010

+ Với B20+31010;  1091010

Ta có: AB=20+3101032+1091010426,2

+ Với B2031010;  10+91010

Ta có: AB=203101032+10+91010420,2

Vì 0,2 < 6,2 mà khoảng cách cần xác định là ngắn nhất nên AB ≈ 0,2.

Vậy tính theo đường chim bay, khoảng cách ngắn nhất để một người ở vị trí có toạ độ (– 3; 4) di chuyển được tới vùng phủ sóng khoảng 0,2 km.

Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh diều hay, chi tiết khác:

Bài 3: Phương trình đường thẳng

Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Bài 5: Phương trình đường tròn

Bài 6: Ba đường conic

Bài tập cuối chương 7

Thực hành phần mềm Geogebra

 

Câu hỏi cùng chủ đề

Xem tất cả