Cho điểm M0(x0; y0) nằm trên đường tròn (C) tâm I(a; b) bán kính R. Gọi ∆ là tiếp tuyến tại điểm M0(x0; y0) thuộc đường tròn (Hình 44)

Hoạt động 4 trang 90 Toán 10 Tập 2: Cho điểm M0(x0; y0) nằm trên đường tròn (C) tâm I(a; b) bán kính R.

Gọi ∆ là tiếp tuyến tại điểm M0(x0; y0) thuộc đường tròn (Hình 44).

Giải Toán 10 Bài 5 (Cánh diều): Phương trình đường tròn (ảnh 1) 

a) Chứng tỏ rằng IM0 là vectơ pháp tuyến của đường thẳng ∆.

b) Tính tọa độ của IM0.

c) Lập phương trình tổng quát của đường thẳng ∆.

Trả lời

a) Đường thẳng ∆ là tiếp tuyến của đường tròn (C) có tâm I tại điểm M0 nên IM0 vuông góc với ∆ tại M0 (định nghĩa tiếp tuyến).

Vậy vectơ IM0 là vectơ pháp tuyến của đường thẳng ∆.

b) Ta có: IM0=x0a;  y0b.

c) Đường thẳng ∆ đi qua điểm M0(x0; y0) và có IM0 là vectơ pháp tuyến.

Vậy phương trình tổng quát của đường thẳng ∆ là(x0 – a)(x – x0) + (y0 – b)(y – y0) = 0.

Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh diều hay, chi tiết khác:

Bài 3: Phương trình đường thẳng

Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Bài 5: Phương trình đường tròn

Bài 6: Ba đường conic

Bài tập cuối chương 7

Thực hành phần mềm Geogebra

Câu hỏi cùng chủ đề

Xem tất cả