Chứng minh rằng các hàm số dưới đây là hàm số tuần hoàn và xét tính chẵn, lẻ của mỗi hàm số đó

Bài 2 trang 34 SBT Toán 11 Tập 1: Chứng minh rằng các hàm số dưới đây là hàm số tuần hoàn và xét tính chẵn, lẻ của mỗi hàm số đó.

a) y=3sinx+2tanx3;

b) y=cosxsinπx2.

Trả lời

a) Tập xác định của hàm số y=3sinx+2tanx3 là D=3π2+k3πk.

Vì x ± 6π ∈ D với mọi x ∈ D và 3sinx+6π+2tanx+6π3=3sinx+2tanx3+2π=3sinx+2tanx3

nên hàm số là hàm số tuần hoàn.

Vì ‒x ∈ D với mọi x ∈ D và 3sinx+2tanx3=3sinx2tanx3=3sinx+2tanx3

nên hàm số y=3sinx+2tanx3 là hàm số lẻ.

b) Hàm số y=cosxsinπx2 có tập xác định là .

Vì x ± 4π ∈ ℝ với mọi x ∈ ℝ và cosx+4πsinπx+4π2=cosxsinπx22π=cosxsinπx2

nên hàm số là hàm số tuần hoàn.

Vì ‒x ∈ ℝ với mọi x ∈ ℝ và cosxsinπ+x2=cosxsinππx2=cosxsinπx2

nên hàm số y=cosxsinπx2 là hàm số chẵn.

Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Bài 4: Hàm số lượng giác và đồ thị

Bài 5: Phương trình lượng giác

Bài tập cuối chương 1

Bài 1: Dãy số

Bài 2: Cấp số cộng

Bài 3: Cấp số nhân

Câu hỏi cùng chủ đề

Xem tất cả