Cho hình chóp tứ giác đều S.ABCD với O là tâm của đáy và có tất cả các cạnh đều bằng a
1.1k
11/12/2023
Thực hành 2 trang 85 Toán 11 Tập 2: Cho hình chóp tứ giác đều S.ABCD với O là tâm của đáy và có tất cả các cạnh đều bằng a. Xác định và tính góc phẳng nhị diện:
a) [S, BC, O];
b) [C, SO, B].
Trả lời
a) Gọi M là trung điểm BC.
ΔSBC đều ⇒ SM ⊥ BC
ΔOBC vuông cân tại O ⇒ OM ⊥ BC
Khi đó góc phẳng nhị diện [S, BC, O] = (MO, MS).
Ta có: O là trung điểm của BD, M là trung điểm của BC
⇒ OM là đường trung bình của ΔBCD
ΔSBC đều, M là trung điểm của BC
⇒ SM là đường trung tuyến
.
Suy ra [S, BC, O] = (MO, MS)
b) Ta có:
• SO ⊥ (ABCD) nên SO⊥OB
• SO ⊥ (ABCD) nên SO⊥OC
Vậy là góc phẳng nhị diện [C, SO, B].
Mà ABCD là hình vuông nên .
Vậy [C, SO, B] = 90o.
Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác: