Cho hình chóp S.ABCD có các cạnh bên bằng nhau và đáy là hình vuông. Chứng minh rằng
Thực hành 1 trang 67 Toán 11 Tập 2: Cho hình chóp S.ABCD có các cạnh bên bằng nhau và đáy là hình vuông. Chứng minh rằng:
a) (SAC) ⊥ (ABCD) .
b) (SAC) ⊥ (SBD).
Thực hành 1 trang 67 Toán 11 Tập 2: Cho hình chóp S.ABCD có các cạnh bên bằng nhau và đáy là hình vuông. Chứng minh rằng:
a) (SAC) ⊥ (ABCD) .
b) (SAC) ⊥ (SBD).
a) Gọi O = AC BD
• ΔSAC cân tại S nên SO ⊥ AC (1)
• ΔSBD cân tại S ⇒ SO ⊥ BD (2)
Từ (1) và (2) suy ra SO ⊥ (ABCD)
Ta có:
b) Vì ABCD là hình vuông nên AC ⊥ BD.
Mà SO ⊥ AC nên AC ⊥ (SBD).
Ta lại có: AC
Do đó (SAC) ⊥ (SBD).
Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác: