Cho hình chóp đều S.A1A2...A6. Mặt phẳng (P) song song với mặt đáy và cắt các cạnh bên lần lượt tại A′1A′2...A′6
184
10/12/2023
Hoạt động khám phá 8 trang 72 Toán 11 Tập 2: Cho hình chóp đều S.A1A2...A6. Mặt phẳng (P) song song với mặt đáy và cắt các cạnh bên lần lượt tại A′1A′2...A′6.
a) Đa giác A′1A′2...A′6 có phái lục giác đều không? Giải thích.
b) Gọi O và O′ lần lượt là tâm của hai lục giác A1A2...A6 và A′1A′2...A′6. Đường thẳng OO′ có vuông góc với mặt đáy không?
Trả lời
a) Ta có:(P) // (A1A2A3...A6)
Do đó A1′A2′ // A1A2; A2′A3′ // A2A3; A3′A4′ // A3A4;
A4′A5′ // A4A5; A5′A6′ // A5A6; A6′A1′ // A6A1
Khi đó .
Mà A1A2 = A2A3 = A3A4 = A4A5 = A5A6 = A6A1
⇒ A1′A2′ = A2′A3′ = A3′A4′ = A4′A5′ = A5′A6′ = A6′A1′
Vậy đa giác A′1A′2...A′6 là lục giác đều.
b) Ta có:
Mà S.A1A2...A6 là hình chóp đều nên SO ⊥ (A1A2...A6 ).
Vậy OO′ ⊥ (A1A2...A6).
Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác: