Cho hình chóp S.ABC có đáy là tam giác vuông tại C, mặt bên SAC là tam giác đều và nằm trong mặt phẳng
666
10/12/2023
Bài 1 trang 73 Toán 11 Tập 2: Cho hình chóp S.ABC có đáy là tam giác vuông tại C, mặt bên SAC là tam giác đều và nằm trong mặt phẳng vuông góc với (ABC).
a) Chứng minh rằng (SBC) ⊥ (SAC).
b) Gọi I là trung điểm của SC. Chứng minh rằng (ABI) ⊥ (SAC).
Trả lời
a) Ta có (SAC) ⊥ (ABC) ⇒ AC ⊥ (ABC) ⇒ AC ⊥ BC
Mà (SAC) ∩ (ABC) = AC nên BC ⊥ (SAC)
Do đó (SBC) ⊥ (SAC).
b) Ta có: BC ⊥ (SAC) nên BC ⊥ AI (AI ⊂ (SAC)) (1)
Tam giác SAC đều có I là trung điểm của SC nên AI ⊥ SC (2)
Từ (1) và (2) suy ra AI ⊥ (SBC)
Mà AI ⊂ (ABI) nên (ABI) ⊥ (SAC)
Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác: