Cho hàm số f(x) = x^3 + ax^2 + 3x + 1 (a thuộc ℝ là tham số). Tìm a để f'(x) > 0 với mọi x thuộc ℝ
Bài 9.45 trang 66 SBT Toán 11 Tập 2: Cho hàm số f(x) = x3 + ax2 + 3x + 1 (a ℝ là tham số). Tìm a để f'(x) > 0 với mọi x ℝ.
Bài 9.45 trang 66 SBT Toán 11 Tập 2: Cho hàm số f(x) = x3 + ax2 + 3x + 1 (a ℝ là tham số). Tìm a để f'(x) > 0 với mọi x ℝ.
Có f'(x) = (x3 + ax2 + 3x + 1)' = 3x2 + 2ax + 3.
Để f'(x) > 0 với mọi x ℝ thì 3x2 + 2ax + 3 > 0 với mọi x ℝ, điều này xảy ra khi và chỉ khi ' = a2 – 9 < 0 −3 < a < 3.
Vậy −3 < a < 3 là giá trị cần tìm.
Xem thêm các bài giải SBT Toán lớp 11 Kết nối tri thức hay, chi tiết khác: