Trắc nghiệm Toán 10 CTST Bài 3. Giải tam giác và ứng dụng thực tế có đáp án

Dạng 1: Cách làm các bài tập giải tam giác có đáp án

  • 185 lượt thi

  • 12 câu hỏi

  • 0 phút

Danh sách câu hỏi

Câu 1:

Giải tam giác ABC biết a = 10, \(\widehat B = 50^\circ ,\widehat C = 60^\circ \).
Xem đáp án

Hướng dẫn giải:

Từ định lí tổng 3 góc trong tam giác, ta có \(\widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right) = 70^\circ \).

Theo định lí sin, ta có \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{b = \frac{{a.\sin B}}{{\sin A}} = \frac{{10.\sin 50^\circ }}{{\sin 70^\circ }} \approx 8,15}\\{c = \frac{{a.\sin C}}{{\sin A}} = \frac{{10.\sin 60^\circ }}{{\sin 70^\circ }} \approx 9,22}\end{array}} \right.\).


Câu 2:

Giải tam giác ABC biết a = 7, b = 8, c = 9.
Xem đáp án

Hướng dẫn giải:

Theo hệ quả của định lí côsin, ta có:

\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{8^2} + {9^2} - {7^2}}}{{2.8.9}} = \frac{2}{3} \Rightarrow \widehat A \approx 48^\circ 11'\).

\(\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{{7^2} + {9^2} - {8^2}}}{{2.7.9}} = \frac{{11}}{{21}} \Rightarrow \widehat B \approx 58^\circ 24'\).

Do đó \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) \approx 73^\circ 25'\).


Câu 3:

Tam giác ABC có b = 12, c = 15, \(\widehat A = 140^\circ \). Khi đó, tìm khẳng định sai trong các khẳng định dưới đây?

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: D.

Theo định lý côsin ta có: \({a^2} = {b^2} + {c^2} - 2bc.\cos A\).

Thay số ta được: \({a^2} = {12^2} + {15^2} - 2.12.15.\cos 140^\circ \approx 644,76\)

a ≈ 25,4.

Lại có: \(\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} \approx \frac{{{{25,4}^2} + {{15}^2} - {{12}^2}}}{{2.25,4.15}} \approx 0,95\)

\( \Rightarrow \widehat B \approx 17,64^\circ \).

Từ đó, \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) \approx 180^\circ - \left( {140^\circ + 17,64^\circ } \right) = 22,36^\circ \).


Câu 4:

Cho tam giác ABC biết a = 3, b = 5, c = 7. Tìm khẳng định đúng trong các khẳng định sau?

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: C.

Áp dụng hệ quả của định lí côsin, ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{5^2} + {7^2} - {3^2}}}{{2.5.7}} = \frac{{13}}{{14}}\)

\( \Rightarrow \widehat A \approx 21,79^\circ \)

Ta có: \(\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{{3^2} + {7^2} - {5^2}}}{{2.3.7}} = \frac{{11}}{{14}}\).

\( \Rightarrow \widehat B \approx 38,21^\circ \).

Do đó: \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) \approx 180^\circ - \left( {21,79^\circ + 38,21^\circ } \right) = 120^\circ \).


Câu 5:

Cho tam giác ABC biết a = 16, c = 12, \(\widehat A = 60^\circ \). Tìm kết quả đúng trong các câu sau?
Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: B.

Áp dụng định lý côsin ta có:

 \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)\( \Leftrightarrow \frac{1}{2} = \frac{{{b^2} + {{12}^2} - {{16}^2}}}{{2.b.12}}\)\[ \Leftrightarrow 2{b^2} - 224 = 24b\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{b = 6 + 2\sqrt {37} }\\{b = 6 - 2\sqrt {37} \,\,\,(loai)}\end{array}} \right.\).

Vậy b = 6 + 2\(\sqrt {37} \).

Lại có: \(\frac{a}{{\sin A}} = \frac{c}{{\sin C}}\)\( \Rightarrow \sin C = \frac{{\sin A.c}}{a} = \frac{{\sin 60^\circ .12}}{{16}} = \frac{{3\sqrt 3 }}{8}\).

\( \Rightarrow \widehat C \approx 40,5^\circ \).

Vậy \(\widehat B = 180^\circ - \left( {\widehat A + \widehat C} \right) \approx 180^\circ - \left( {60^\circ + 40,5^\circ } \right) = 79,5^\circ \).


Câu 6:

Cho tam giác ABC biết a = 46, \(\widehat B = 43^\circ 42'\), \(\widehat C = 16^\circ 20'\). Chọn đáp án có câu trả lời đúng.
Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: A.

Trong tam giác ABC:

\(\widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right) \approx 180^\circ - \left( {43^\circ 42' + 16^\circ 20'} \right) = 119^\circ 58'\).

Theo định lý sin ta có:

\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)

\( \Rightarrow b = \frac{{a.\sin B}}{{\sin A}} \approx \frac{{46.\sin 43^\circ 42'}}{{\sin 119^\circ 58'}} \approx 36,68\).

Và \(c = \frac{{a.\sin C}}{{\sin A}} \approx \frac{{46.\sin 16^\circ 20'}}{{\sin 119^\circ 58'}} \approx 14,93\).


Câu 7:

Cho tam giác ABC vuông tại A biết a = 20, \(\widehat C = 23^\circ \). Chọn đáp án đúng nhất trong các kết quả dưới đây?
Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: B.

Ta có: \(\widehat B = 180^\circ - \left( {\widehat A + \widehat C} \right) = 180^\circ - \left( {90^\circ + 23^\circ } \right) = 67^\circ \).

Lại có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)

\( \Rightarrow b = \frac{{a.\sin B}}{{\sin A}} = 20.\sin 67^\circ \approx 18,41\).

\(c = \frac{{a.\sin C}}{{\sin A}} = 20.\sin 23^\circ \approx 7,81\).


Câu 8:

Cho tam giác ABC biết AB = 3, \(AC = 3\sqrt 2 \) và \(\widehat C = 45^\circ \). Trong các phương án dưới đây, chọn phương án SAI?

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: D.

Ta có: \(A{B^2} = A{C^2} + B{C^2} - 2.AC.BC.\cos 45^\circ \)

\( \Leftrightarrow {3^2} = {\left( {3\sqrt 2 } \right)^2} + B{C^2} - 2.BC.3\sqrt 2 .\frac{{\sqrt 2 }}{2}\)

\( \Leftrightarrow B{C^2} - 6BC + 9 = 0\)

(BC – 3)2 = 0

BC = 3.

Dễ thấy AB2 + BC2 = AC2 nên theo định lý đảo của định lý Pythagore suy ra tam giác ABC vuông tại B.

Vậy \(\widehat B = 90^\circ \), \(\widehat A = 45^\circ \).


Câu 9:

Tam giác ABC vuông tại A, đường cao AH = 24 cm và AB : AC = 3 : 4. Chọn kết quả SAI?
Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: C.

Từ AB : AC = 3 : 4\( \Rightarrow \frac{{AB}}{3} = \frac{{AC}}{4}\).

Đặt \(\frac{{AB}}{3} = \frac{{AC}}{4} = k\), k > 0 AB = 3k; AC = 4k.

Ta có: \(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}}\)\( \Leftrightarrow \frac{1}{{{{24}^2}}} = \frac{1}{{9{k^2}}} + \frac{1}{{16{k^2}}}\)\( \Leftrightarrow \)k = 10.

Suy ra: AB = 30; AC = 40, từ đó suy ra BC = 50 (định lí Pythagore).

Lại có: cos B = \[\frac{{AB}}{{BC}} = \frac{{30}}{{50}} = \frac{3}{5}\]\( \Rightarrow \widehat B \approx 53,13^\circ \)

\( \Rightarrow \widehat C = 90^\circ - \widehat B \approx 36,87^\circ \).


Câu 10:

Biết tam giác ABC có a = 16, b = 17, c = 20. Chọn phương án có kết quả đúng nhất?
Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: B.

Ta có: cos A = \(\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)= \(\frac{{{{17}^2} + {{20}^2} - {{16}^2}}}{{2.17.20}}\)= \(\frac{{433}}{{680}}\)

\( \Rightarrow \widehat A\)= 50,45\(^\circ \).

Tương tự: cos B = \(\frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\)= \(\frac{{{{16}^2} + {{20}^2} - {{17}^2}}}{{2.16.20}}\)= \(\frac{{367}}{{640}}\)

\( \Rightarrow \widehat B \approx 55^\circ \)

Do đó: \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) \approx 180^\circ - \left( {50,45^\circ + 55^\circ } \right) = 74,55^\circ \).


Câu 11:

Cho tam giác ABC có c = 7,2, \(\widehat A = 30^\circ ,\widehat C = 45^\circ \). Mệnh đề SAI là:
Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: C.

Trong tam giác ABC có: \(\widehat B = 180^\circ - \left( {\widehat A + \widehat C} \right) = 180^\circ - \left( {30^\circ + 45^\circ } \right) = 105^\circ \).

Theo định lý sin ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)

Do đó: a = \(\frac{{c.sinA}}{{\sin C}}\)= \(\frac{{7,2.\sin 30^\circ }}{{\sin 45^\circ }}\)= \(\frac{{18\sqrt 2 }}{5}\).

Và b = \(\frac{{c.\sin B}}{{\sin C}}\)= \(\frac{{7,2.\sin 105^\circ }}{{\sin 45^\circ }}\)= \(\frac{{18 + 18\sqrt 3 }}{5}\).


Câu 12:

Cho hình thoi ABCD có cạnh bằng 2 cm và \(\widehat {ABC} = 60^\circ \). Tìm khẳng định SAI trong các khẳng định sau?

Xem đáp án

Hướng dẫn giải:

Đáp án đúng là: A.

 

Media VietJack

Vì \(\widehat {ABC} = 60^\circ \) nên \(\widehat {BAD} = 120^\circ \).

Ta có ABCD là hình thoi nên AB = AD = 2 cm.

Lại có BD là tia phân giác của góc \(\widehat {ABC}\) nên \(\widehat {ABD} = \frac{1}{2}\widehat {ABC} = \frac{1}{2}.60^\circ = 30^\circ \).

Mà AB = AD nên tam giác ABD cân tại A.

Do đó: \(\widehat {ADB} = \widehat {ABD} = 30^\circ \) và \(\widehat {BAD} = 180^\circ - 2\widehat {ABD} = 180^\circ - 2.30^\circ = 120^\circ \).

Áp dụng định lí côsin trong tam giác ABD ta có:

\(B{D^2} = A{B^2} + A{D^2} - 2.AB.AD.\cos \widehat {BAD}\)

Thay số: \(B{D^2} = {2^2} + {2^2} - 2.2.2.\cos 120^\circ = 12\)\( \Rightarrow BD = 2\sqrt 3 \)cm.


Bắt đầu thi ngay

Bài thi liên quan


Có thể bạn quan tâm


Các bài thi hot trong chương