Câu hỏi:
19/12/2023 115Cho tam giác ABC biết AB = 3, \(AC = 3\sqrt 2 \) và \(\widehat C = 45^\circ \). Trong các phương án dưới đây, chọn phương án SAI?
A. \(\widehat B = 90^\circ \);
B. BC = 3;
C. \(\widehat A = 45^\circ \);
D. \(\widehat B = 120^\circ \).
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: D.
Ta có: \(A{B^2} = A{C^2} + B{C^2} - 2.AC.BC.\cos 45^\circ \)
\( \Leftrightarrow {3^2} = {\left( {3\sqrt 2 } \right)^2} + B{C^2} - 2.BC.3\sqrt 2 .\frac{{\sqrt 2 }}{2}\)
\( \Leftrightarrow B{C^2} - 6BC + 9 = 0\)
⇔ (BC – 3)2 = 0
⇒ BC = 3.
Dễ thấy AB2 + BC2 = AC2 nên theo định lý đảo của định lý Pythagore suy ra tam giác ABC vuông tại B.
Vậy \(\widehat B = 90^\circ \), \(\widehat A = 45^\circ \).
Hướng dẫn giải:
Đáp án đúng là: D.
Ta có: \(A{B^2} = A{C^2} + B{C^2} - 2.AC.BC.\cos 45^\circ \)
\( \Leftrightarrow {3^2} = {\left( {3\sqrt 2 } \right)^2} + B{C^2} - 2.BC.3\sqrt 2 .\frac{{\sqrt 2 }}{2}\)
\( \Leftrightarrow B{C^2} - 6BC + 9 = 0\)
⇔ (BC – 3)2 = 0
⇒ BC = 3.
Dễ thấy AB2 + BC2 = AC2 nên theo định lý đảo của định lý Pythagore suy ra tam giác ABC vuông tại B.
Vậy \(\widehat B = 90^\circ \), \(\widehat A = 45^\circ \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tam giác ABC vuông tại A, đường cao AH = 24 cm và AB : AC = 3 : 4. Chọn kết quả SAI?
Câu 2:
Giải tam giác ABC biết a = 10, \(\widehat B = 50^\circ ,\widehat C = 60^\circ \).
Câu 3:
Cho hình thoi ABCD có cạnh bằng 2 cm và \(\widehat {ABC} = 60^\circ \). Tìm khẳng định SAI trong các khẳng định sau?
Câu 4:
Cho tam giác ABC biết a = 3, b = 5, c = 7. Tìm khẳng định đúng trong các khẳng định sau?
Câu 5:
Biết tam giác ABC có a = 16, b = 17, c = 20. Chọn phương án có kết quả đúng nhất?
Câu 7:
Cho tam giác ABC vuông tại A biết a = 20, \(\widehat C = 23^\circ \). Chọn đáp án đúng nhất trong các kết quả dưới đây?
Câu 8:
Cho tam giác ABC biết a = 16, c = 12, \(\widehat A = 60^\circ \). Tìm kết quả đúng trong các câu sau?
Câu 9:
Cho tam giác ABC biết a = 46, \(\widehat B = 43^\circ 42'\), \(\widehat C = 16^\circ 20'\). Chọn đáp án có câu trả lời đúng.
Câu 10:
Tam giác ABC có b = 12, c = 15, \(\widehat A = 140^\circ \). Khi đó, tìm khẳng định sai trong các khẳng định dưới đây?