Giải SGK Toán 7 Bài 10 (Cánh diều): Tính chất ba đường trung tuyến của tam giác
A. Câu hỏi trong bài
Giải Toán 7 trang 104 Tập 2
Điểm G được xác định như thế nào?
Lời giải:
Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:
Điểm G là trọng tâm của tam giác (hay G là giao điểm của ba đường trung tuyến của tam giác).
Lời giải:
Ta coi độ dài cạnh của ô vuông nhỏ là 1.
Khi đó độ dài của đoạn thẳng MB bằng 3 lần độ dài cạnh ô vuông nên MB = 3.
Tương tự ta có MC = 3.
Lại thấy M nằm giữa B và C nên M là trung điểm của BC.
Vậy điểm A là một đỉnh của tam giác ABC, điểm M là trung điểm của cạnh BC.
Giải Toán 7 trang 105 Tập 2
Lời giải:
Quan sát Hình 101 ta thấy:
+ Đoạn thẳng HK là đường trung tuyến của tam giác BHC vì H là đỉnh của tam giác BHC, K là trung điểm của cạnh BC;
+ Đoạn thẳng KH là đường trung tuyến của tam giác AKC vì K là đỉnh của tam giác AKC, H là trung điểm của cạnh AC.
Lời giải:
Quan sát Hình 102, ta thấy ba đường trung tuyến AM, BN, CP của tam giác ABC cùng đi qua điểm G.
Lời giải:
Tam giác PQR có hai đường trung tuyến QM và RK cắt nhau tại G (giả thiết) nên G là trọng tâm của tam giác PQR.
I là trung điểm của cạnh QR nên PI là đường trung tuyến của tam giác PQR kẻ từ đỉnh P.
Mà các đường trung tuyến của tam giác cùng đi qua trọng tâm của tam giác nên trung tuyến PI sẽ đi qua điểm G.
Vậy ba điểm P, G, I thẳng hàng.
Giải Toán 7 trang 106 Tập 2
Bằng cách đếm số ô vuông, tìm các tỉ số
Lời giải:
Đếm số ô vuông trong Hình 104, ta thấy:
+) Đoạn thẳng AG đi qua 6 ô vuông, đoạn thẳng AM đi qua 9 ô vuông.
Do đó ;
+) Đoạn thẳng BG đi qua 4 ô vuông, đoạn thẳng BN đi qua 6 ô vuông.
Do đó: ;
+) Đoạn thẳng CG đi qua 4 ô vuông, đoạn thẳng CP đi qua 6 ô vuông.
Do đó: .
B. Bài tập
Giải Toán 7 trang 107 Tập 2
GA + GB + GC = (AM + BN + CP).
Lời giải:
GT |
DABC, ba đường trung tuyến AM, BN, CP đồng quy tại G |
KL |
GA + GB + GC = (AM + BN + CP). |
Chứng minh (Hình vẽ dưới đây):
Tam giác ABC có ba đường trung tuyến AM, BN, CP đồng quy tại G nên G là trọng tâm của tam giác ABC.
Khi đó AG = AM; BG = BN; CG = CP (tính chất trọng tâm của tam giác)
Do đó GA + GB + GC = AM + BN + CP = (AM + BN + CP).
Vậy GA + GB + GC = (AM + BN + CP).
Lời giải:
GT |
ABC cân tại A, hai đường trung tuyến BM và CN cắt nhau tại G |
KL |
a) BM = CN; b) GBC cân tại G. |
Chứng minh (Hình vẽ dưới đây):
a) Tam giác ABC cân tại A (giả thiết) nên AB = AC (1).
Do BM đường trung tuyến của tam giác ABC nên M là trung điểm của AC do đó (2)
CN là đường trung tuyến của tam giác ABC nên N là trung điểm của AB do đó (3)
Từ (1), (2) và (3) ta có: AM = AN.
Xét ABM và ACN có:
AM = AN (chứng minh trên).
là góc chung,
AB = AC (chứng minh trên)
Do đó ABM = ACN (c.g.c)
Suy ra BM = CN (2 cạnh tương ứng).
Vậy BM = CN.
b) Tam giác ABC có hai đường trung tuyến BM và CN cắt nhau tại G nên G là trọng tâm của tam giác ABC.
Suy ra BG = BM; CG = CN (tính chất trọng tâm của tam giác).
Mà BM = CN (chứng minh câu a)
Do đó BG = CG.
Tam giác GBC có BG = CG nên tam giác GBC cân tại G.
Vậy GBC cân tại G.
Lời giải:
GT |
ABC, hai đường trung tuyến AM và BN cắt nhau tại G, D ∈ tia đối của tia MA, MD = MG. |
KL |
a) GA = GD; b) MBG = MCD; c) CD = 2GN. |
Chứng minh (Hình vẽ dưới đây):
a) Tam giác ABC có hai đường trung tuyến AM, BN cắt nhau tại G (giả thiết) nên G là trọng tâm của tam giác ABC.
Khi đó GM = GA (tính chất trọng tâm của tam giác).
Điểm D nằm trên tia đối của tia MA và MD = MG (giả thiết) nên M là trung điểm của GD.
Suy ra GM = GD.
Do đó GA = GD.
Vậy GA = GD.
b) Do M là trung điểm của GD nên MG = MD.
Xét MBG và MDC có:
MB = MC (giả thiết),
(hai góc đối đỉnh),
MG = MD (chứng minh trên),
Do đó MBG = MDC (c.g.c).
c) Vì MBG = MDC (chứng minh câu b) nên CD = BG (hai cạnh tương ứng).
Lại có G là trọng tâm của tam giác ABC nên BG = 2GN.
Do đó CD = 2GN.
Vậy CD = 2GN.
Lời giải:
GT |
ABC Hai đường trung tuyến AM và BN cắt nhau tại G, H là hình chiếu của A lên đường thẳng BC, H là trung điểm của BM. |
KL |
a) AHB = AHM; b) . |
Chứng minh (Hình vẽ dưới đây):
a) Vì H là hình chiếu của A trên BC nên AH BC
Do đó AHB vuông tại H và AHM vuông tại H.
Xét AHB (vuông tại H) và AHM (vuông tại H) có:
AH là cạnh chung,
HB = HM (H là trung điểm của BM).
Do đó AHB = AHM (hai cạnh góc vuông).
Vậy AHB = AHM.
b) Vì AHB = AHM (chứng minh câu a)
Nên AB = AM (hai cạnh tương ứng).
ABC có hai đường trung tuyến AM, BN cắt nhau tại G nên G là trọng tâm của ABC.
Suy ra AG = AM (tính chất trọng tâm của tam giác)
Do đó AG = AB.
Vậy
a) AH có vuông góc với BC không? Vì sao?
b) Vị trí O ở độ cao bao nhiêu mét so với mặt đất?
Lời giải:
a) DABC cân tại A nên AB = AC và .
Lại có AH là đường trung tuyến của ABC nên H là trung điểm của BC.
Do đó BH = CH.
Xét ABH và ACH có:
AB = AC (chứng minh trên),
(chứng minh trên),
BH = CH (chứng minh trên),
Do đó ABH = ACH (c.g.c).
Suy ra (hai góc tương ứng).
Mà
Nên
Hay AH BC.
Vậy AH BC.
b) Vì O là trọng tâm của tam giác ABC nên OH = AH (tính chất trong tâm tam giác)
Mà AH = 1,2 m
Do đó OH = . 1,2 = 0,4 m.
Vì mỗi tầng cao 3,3 m mà ngôi nhà ba tầng nên vị trí O ở độ cao so với mặt đất là:
0,4 + 3,3 . 3 = 10,3 (m)
Vậy vị trí O ở độ cao 10,3 m so với mặt đất.
Xem thêm lời giải bài tập SGK Toán lớp 7 Cánh diều hay, chi tiết khác:
Bài 8: Đường vuông góc và đường xiên
Bài 9: Đường trung trực của một đoạn thẳng
Bài 11: Tính chất ba đường phân giác của tam giác