Giải Toán 11 Bài 5: Dãy số
Lời giải:
Sau bài học này ta sẽ giải quyết được bài toán trên như sau:
Ta có: n = 2030 – 2020 = 10.
Vậy số dân của thành phố đó vào năm 2030 sẽ là
P10 = 500 . (1 + 0,02)10 ≈ 609 (nghìn người).
1. Định nghĩa dãy số
Lời giải:
Năm số chính phương đầu theo thứ tự tăng dần là: 0; 1; 4; 9; 16.
Số chính phương thứ nhất là u1 = 02 = 0
Số chính phương thứ hai là u2 = 12 = 1
Số chính phương thứ ba là u3 = 22 = 4
Số chính phương thứ tư là u4 = 32 = 9
Số chính phương thứ năm là u5 = 42 = 16
Tiếp tục như trên, ta dự đoán được công thức tính số chính phương thứ n là un = (n – 1)2 với n ∈ ℕ*.
b) Viết công thức số hạng un của các số tìm được ở câu a) và nêu rõ điều kiện của n.
Lời giải:
a) Các số chính phương nhỏ hơn 50 được sắp xếp theo thứ tự từ bé đến lớn là
0; 1; 4; 9; 16; 25; 36; 49.
b) Ta có: un = (n – 1)2 với n ∈ ℕ* và n ≤ 8.
b) Viết dãy số hữu hạn gồm năm số hạng đầu của dãy số trong câu a. Xác định số hạng đầu và số hạng cuối của dãy số hữu hạn này.
Lời giải:
a) Xét số tự nhiên a khác 0, ta có a chia cho 5 dư 1, khi đó tồn tại số tự nhiên q khác 0 để a = 5q + 1.
Xét dãy số gồm tất cả các số tự nhiên chia cho 5 dư 1 theo thứ tự tăng dần. Khi đó, số hạng tổng quát của dãy số là un = 5n + 1 (n ∈ ℕ*).
b) Dãy gồm năm số hạng đầu của dãy số trong câu a là: 6; 11; 16; 21; 26.
Số hạng đầu của dãy là u1 = 6, số hạng cuối của dãy là u5 = 26.
2. Các cách cho một dãy số
HĐ3 trang 43 Toán 11 Tập 1: Xét dãy số (un) gồm tất cả các số nguyên dương chia hết cho 5:
5, 10, 15, 20, 25, 30, ...
a) Viết công thức số hạng tổng quát un của dãy số.
b) Xác định số hạng đầu và viết công thức tính số hạng thứ n theo số hạng thứ n – 1 của dãy số. Công thức thu được gọi là hệ thức truy hồi.
Lời giải:
a) Số hạng tổng quát của dãy số là un = 5n (n ∈ ℕ*).
b) Số hạng đầu của dãy số là u1 = 5.
Công thức tính số hạng thứ n theo số hạng thứ n – 1 là un = un – 1 + 5 (n ∈ ℕ*, n > 1).
b) Viết năm số hạng đầu của dãy số Fibonacci (Fn) cho bởi hệ thức truy hồi
Lời giải:
a) Năm số hạng đầu của dãy số (un) với số hạng tổng quát un = n! là
u1 = 1! = 1;
u2 = 2! = 2;
u3 = 3! = 6;
u4 = 4! = 24;
u5 = 5! = 120.
b) Năm số hạng đầu của dãy số Fibonacci (Fn) là
F1 = 1;
F2 = 1;
F3 = F2 + F1 = 1 + 1 = 2;
F4 = F3 + F2 = 2 + 1 = 3;
F5 = F4 + F3 = 3 + 2 = 5.
3. Dãy số tăng, dãy số giảm, và dãy số bị chặn
HĐ4 trang 45 Toán 11 Tập 1: a) Xét dãy số (un) với un = 3n – 1. Tính un + 1 và so sánh với un.
b) Xét dãy số (vn) với . Tính vn + 1 và so sánh với vn.
Lời giải:
a) Ta có: un + 1 = 3(n + 1) – 1 = 3n + 3 – 1 = 3n + 2
Xét hiệu un + 1 – un ta có: un + 1 – un = (3n + 2) – (3n – 1) = 3 > 0, tức là un + 1 > un ∀ n ∈ ℕ*.
Vậy un + 1 > un ∀ n ∈ ℕ*.
b) Ta có: .
Xét hiệu vn + 1 – vn ta có:
vn + 1 – vn =
.
Tức là vn + 1 < vn , ∀ n ∈ ℕ*.
Vậy vn + 1 < vn ∀ n ∈ ℕ*.
Luyện tập 3 trang 45 Toán 11 Tập 1: Xét tính tăng, giảm của dãy số (un), với .
Lời giải:
Ta có: , .
Tức là un + 1 < un , ∀ n ∈ ℕ*.
Vậy (un) là dãy số giảm.
HĐ5 trang 45 Toán 11 Tập 1: Cho dãy số (un) với .
a) So sánh un và 1.
b) So sánh un và 2.
Lời giải:
a) Ta có: .
b) Ta có: , suy ra .
Do đó, .
Luyện tập 4 trang 46 Toán 11 Tập 1: Xét tính bị chặn của dãy số (un), với un = 2n – 1.
Lời giải:
Ta có: un = 2n – 1 ≥ 1, ∀ n ∈ ℕ*.
Do đó, dãy số (un) bị chặn dưới.
Dãy số (un) không bị chặn trên vì không có số M nào thỏa mãn:
un = 2n – 1 ≤ M với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.
s1 = 200, sn = sn – 1 + 25 với n ≥ 2.
a) Tính lương của anh Thanh vào năm thứ 5 làm việc cho công ty.
b) Chứng minh (sn) là dãy số tăng. Giải thích ý nghĩa thực tế của kết quả này.
Lời giải:
a) Ta có: s2 = s1 + 25 = 200 + 25 = 225
s3 = s2 + 25 = 225 + 25 = 250
s4 = s3 + 25 = 250 + 25 = 275
s5 = s4 + 25 = 275 + 25 = 300
Vậy lương của anh Thanh vào năm thứ 5 làm việc cho công ty là 300 triệu đồng.
b) Ta có: sn = sn – 1 + 25 ⇔ sn – sn – 1 = 25 > 0 với mọi n ≥ 2, n ∈ ℕ*.
Tức là sn > sn – 1 với mọi n ≥ 2, n ∈ ℕ*.
Vậy (sn) là dãy số tăng. Điều này có nghĩa là mức lương hàng năm của anh Thanh tăng dần theo thời gian làm việc.
Bài tập
a) un = 3n – 2;
b) un = 3 . 2n;
c) .
Lời giải:
a) Ta có: u1 = 3 . 1 – 2 = 1;
u2 = 3 . 2 – 2 = 4;
u3 = 3 . 3 – 2 = 7;
u4 = 3 . 4 – 2 = 10;
u5 = 3 . 5 – 2 = 13;
u100 = 3 . 100 – 2 = 298.
b) Ta có: u1 = 3 . 21 = 6;
u2 = 3 . 22 = 12;
u3 = 3 . 23 = 24;
u4 = 3 . 24 = 48;
u5 = 3 . 25 = 96;
u100 = 3 . 2100.
c) Ta có: ;
;
;
;
;
.
a) Viết năm số hạng đầu của dãy số.
b) Dự đoán công thức số hạng tổng quát của un.
Lời giải:
a) Năm số hạng đầu của dãy số là
u1 = 1;
u2 = 2u1 = 2 . 1 = 2;
u3 = 3u2 = 3 . 2 = 6;
u4 = 4u3 = 4 . 6 = 24;
u5 = 5u4 = 5 . 24 = 120.
b) Nhận xét thấy u1 = 1 = 1!;
u2 = 2 . 1 = 2!;
u3 = 3u2 = 3 . 2 . 1 = 3!;
u4 = 4u3 = 4 . 3 . 2 . 1 = 4!;
u5 = 5u4 = 5 . 4 . 3 . 2 . 1 = 5!;
...
Cứ tiếp tục làm như thế, ta dự đoán được công thức số hạng tổng quát của un là un = n!.
Bài 2.3 trang 46 Toán 11 Tập 1: Xét tính tăng, giảm của dãy số (un), biết:
a) un = 2n – 1;
b) un = – 3n + 2;
c) .
Lời giải:
a) Ta có: un + 1 = 2(n + 1) – 1 = 2n + 2 – 1 = 2n + 1
Xét hiệu un + 1 – un = (2n + 1) – (2n – 1) = 2 > 0, tức là un + 1 > un , ∀ n ∈ ℕ*.
Vậy (un) là dãy số tăng.
b) Ta có: un + 1 = – 3(n + 1) + 2 = – 3n – 3 + 2 = – 3n – 1
Xét hiệu un + 1 – un = (– 3n – 1) – (– 3n + 2) = – 3 < 0, tức là un + 1 < un, ∀ n ∈ ℕ*.
Vậy (un) là dãy số giảm.
c)
Nhận xét thấy: ; ;
; ; ...
Vậy dãy số (un) không tăng, cũng không giảm.
a) un = n – 1;
b) ;
c) un = sin n;
d) un = (– 1)n – 1 n2.
Lời giải:
a) Ta có: un = n – 1 ≥ 0 với mọi n ∈ ℕ*.
Do đó, dãy số (un) bị chặn dưới với mọi n ∈ ℕ*.
Dãy số (un) không bị chặn trên vì không có số M nào thỏa mãn:
un = n – 1 ≤ M với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.
b) Ta có: , với mọi n ∈ ℕ*.
Vì , ∀ n ∈ ℕ* nên ∀ n ∈ ℕ*.
Suy ra hay ∀ n ∈ ℕ*.
Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.
c) Ta có: – 1 ≤ sin n ≤ 1 với mọi n ∈ ℕ*.
Do đó, – 1 ≤ un ≤ 1 với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.
d) un = (– 1)n – 1 n2
Ta có: (– 1)n – 1 = 1 với mọi n ∈ ℕ* và n lẻ.
(– 1)n – 1 = – 1 với mọi n ∈ ℕ* và n chẵn.
n2 ≥ 0 với mọi n ∈ ℕ*.
Do đó, – 1 . n2 ≤ (– 1)n – 1 n2 ≤ 1 . n2 hay – n2 ≤ un ≤ n2 với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.
a) Đều chia hết cho 3;
b) Khi chia cho 4 dư 1.
Lời giải:
a) Các số nguyên dương chia hết cho 3 là: 3; 6; 9; 12; ...
Các số này có dạng 3n với n với n ∈ ℕ*.
Vậy số hạng tổng quát của dãy số tăng gồm tất cả các số nguyên dương mà mỗi số hạng của nó đều chia hết cho 3 là un = 3n với n ∈ ℕ*.
b) Các số nguyên dương chia cho 4 dư 1 có dạng là 4n + 1 với n ∈ ℕ*.
Vậy số hạng tổng quát của dãy số tăng gồm tất cả các số nguyên dương mà mỗi số hạng của nó khi chia cho 4 dưa là un = 4n + 1 với n ∈ ℕ*.
a) Tìm số tiền ông An nhận được sau tháng thứ nhất, sau tháng thứ hai.
b) Tìm số tiền ông An nhận được sau 1 năm.
Lời giải:
a) Số tiền ông An nhận được sau tháng thứ nhất là
(triệu đồng).
Số tiền ông An nhận được sau tháng thứ hai là
(triệu đồng).
b) Số tiền ông An nhận được sau 1 năm (12 tháng) là
(triệu đồng).
Gọi An (n ∈ ℕ) là số tiền còn nợ (triệu đồng) của chị Hương sau n tháng.
a) Tìm lần lượt A0, A1, A2, A3, A4, A5, A6 để tính số tiền còn nợ của chị Hương sau 6 tháng.
b) Dự đoán hệ thức truy hồi đối với dãy số (An).
Lời giải:
a) Ta có: A0 = 100 (triệu đồng)
+) Tiền lãi chị Hương phải trả sau 1 tháng là 100 . 0,8% = 0,8 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 1 tháng là 2 – 0,8 = 1,2 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 1 tháng là
A1 = 100 – 1,2 = 98,8 (triệu đồng).
+) Tiền lãi chị Hương phải trả sau 2 tháng là 98,8 . 0,8% = 0,7904 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 2 tháng là 2 – 0,7904 = 1,2096 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 2 tháng là
A2 = 98,8 – 1,2096 = 97,5904 (triệu đồng).
+) Tiền lãi chị Hương phải trả sau 3 tháng là 97,5904 . 0,8% = 0,7807232 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 3 tháng là 2 – 0,7807232 = 1,2192768 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 3 tháng là
A3 = 97,5904 – 1,2192768 = 96,3711232 (triệu đồng).
+) Tiền lãi chị Hương phải trả sau 4 tháng là 96,3711232 . 0,8% ≈ 0,77097 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 4 tháng là 2 – 0,77097 = 1,22903 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 4 tháng là
A4 = 96,3711232 – 1,22903 = 95,1420932 (triệu đồng).
+) Tiền lãi chị Hương phải trả sau 5 tháng là 95,1420932 . 0,8% ≈ 0,76114 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 5 tháng là 2 – 0,76114 = 1,23886 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 5 tháng là
A5 = 95,1420932 – 1,23886 = 93,9032332 (triệu đồng).
+) Tiền lãi chị Hương phải trả sau 6 tháng là 93,9032332 . 0,8% ≈ 0,75123 (triệu đồng).
Do đó, số tiền gốc chị Hương trả được sau 6 tháng là 2 – 0,75123 = 1,24877 (triệu đồng).
Khi đó, số tiền còn nợ của chị Hương sau 6 tháng là
A6 = 93,9032332 – 1,24877 = 92,6544632 (triệu đồng).
b) Dự đoán hệ thức truy hồi đối với dãy số (An) là
A0 = 100; An = An – 1 – (2 – An – 1. 0,8%) = 1,008An – 1 – 2.
Xem thêm các bài giải SGK Toán 11 Kết nối tri thức hay, chi tiết khác: