Trong các dãy số (un) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn un = n – 1
14.3k
07/06/2023
Bài 2.4 trang 46 Toán 11 Tập 1: Trong các dãy số (un) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?
a) un = n – 1;
b) ;
c) un = sin n;
d) un = (– 1)n – 1 n2.
Trả lời
a) Ta có: un = n – 1 ≥ 0 với mọi n ∈ ℕ*.
Do đó, dãy số (un) bị chặn dưới với mọi n ∈ ℕ*.
Dãy số (un) không bị chặn trên vì không có số M nào thỏa mãn:
un = n – 1 ≤ M với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.
b) Ta có: , với mọi n ∈ ℕ*.
Vì , ∀ n ∈ ℕ* nên ∀ n ∈ ℕ*.
Suy ra hay ∀ n ∈ ℕ*.
Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.
c) Ta có: – 1 ≤ sin n ≤ 1 với mọi n ∈ ℕ*.
Do đó, – 1 ≤ un ≤ 1 với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.
d) un = (– 1)n – 1 n2
Ta có: (– 1)n – 1 = 1 với mọi n ∈ ℕ* và n lẻ.
(– 1)n – 1 = – 1 với mọi n ∈ ℕ* và n chẵn.
n2 ≥ 0 với mọi n ∈ ℕ*.
Do đó, – 1 . n2 ≤ (– 1)n – 1 n2 ≤ 1 . n2 hay – n2 ≤ un ≤ n2 với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.
Xem thêm các bài giải SGK Toán 11 Kết nối tri thức hay, chi tiết khác:
Bài 4: Phương trình lượng giác cơ bản
Bài tập cuối chương 1
Bài 5: Dãy số
Bài 6: Cấp số cộng
Bài 7: Cấp số nhân
Bài tập cuối chương 2