Xét vị trí tương đối của mỗi cặp đường thẳng sau: a) d1: 2x – 3y + 5 = 0 và d2: 2x + y – 1 = 0

Bài 40 trang 82 SBT Toán 10 Tập 2: Xét vị trí tương đối của mỗi cặp đường thẳng sau:

a) d1: 2x – 3y + 5 = 0 và d2: 2x + y – 1 = 0;

b) d3:x=13ty=3+t  và d4: x + 3y – 5 = 0;

c) d5:x=22ty=1+t  và  d6:x=2+2t'y=1t'.

Trả lời

a) Vectơ pháp tuyến của d1  là: n1=2;3  

Vectơ pháp tuyến của d2  là: n2=2;1

Ta có: 2231  suy ra hai vectơ n1  và n2  không cùng phương.

Do đó d1  và d2  cắt nhau.

b) Vectơ chỉ phương của d3  là: u3=3;1  nên vectơ pháp tuyến của d3  là: n3=1;3 .

Vectơ pháp tuyến của d4  là: n4=1;3

Ta có n3=n4 nên n3  và n4  cùng phương hay d3 song song hoặc trùng d­4.

Lấy điểm A(-1; 3) thuộc d4 .

Thay tọa độ A(-1; 3) vào  ta có: - 1 + 3.3 – 5 = 3 = 0 (vô lí).

Suy ra A(-1; 3) không thuộc d4 .

Vậy 2 đường thẳng trên song song.

c) Vectơ chỉ phương của d5  là  u5=2;1

Vectơ chỉ phương của d6  là u6=2;1

Ta thấy u5=1.u6  nên 2 vectơ u5  và  u6 cùng phương. Do đó hai đường thẳng d5 và d6 song song hoặc trùng nhau.

Lấy điểm M(2; -1) thuộc đường thẳng d5. Thay tọa độ điểm M vào phương trình tham số của d6  ta có:

2=2+2t'1=1t't'=2t'=2t'=2

Suy ra M thuộc d6 .

Vậy dtrùng d6.

Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Bài 2: Biểu thức tọa độ của các phép toán vectơ

Bài 3: Phương trình đường thẳng

Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Bài 5: Phương trình đường tròn

Bài 6: Ba đường conic

Bài tập cuối chương 7

Câu hỏi cùng chủ đề

Xem tất cả